
Cisco DevNet Evolving Technologies
Study Guide

Nicholas Russo — CCIE #42518 (EI/SP) CCDE #20160041

October 30, 2021

1



Abstract

Nicholas Russo holds active CCIE certifications in Enterprise Infrastructure and Service Provider, as
well as CCDE. Nick authored a comprehensive study guide for the CCIE Service Provider version 4
examination and this document provides updates to the written test for all CCIE/CCDE tracks. Nick also
holds a Bachelor’s of Science in Computer Science, from the Rochester Institute of Technology (RIT) and
is a frequent programmer in the field of network automation. Nick lives in Maryland, USA with his wife,
Carla, and daughters, Olivia and Josephine. For updates to this document and Nick’s other professional
publications, please follow the author on his Twitter, LinkedIn, and personal website.

Technical Reviewers: Angelos Vassiliou, Leonid Danilov, and many from the RouterGods team.

This material is not sponsored or endorsed by Cisco Systems, Inc. Cisco, Cisco Systems, CCIE and
the CCIE Logo are trademarks of Cisco Systems, Inc. and its affiliates. All Cisco products, features, or
technologies mentioned in this document are trademarks of Cisco. This includes, but is not limited to,
Cisco IOS, Cisco IOS-XE, Cisco IOS-XR, and Cisco DevNet. The information herein is provided on an
“as is” basis, without any warranties or representations, express, implied or statutory, including without
limitation, warranties of noninfringement, merchantability or fitness for a particular purpose.

Author’s Notes

This book was originally designed for the CCIE and CCDE certification tracks that introduced the “Evolving
Technologies” section of the blueprint for the written qualification exam. Those exams have since been
overhauled and many of their topics have been moved under the umbrella of Cisco DevNet. This book
is not specific to any certification track and provides an overview of the three key evolving technologies:
Cloud, Network Programmability, and Internet of Things (IoT). Italic text represents cited text from another
not created by the author. This is often directly from a Cisco document, which is appropriate given that this
is a summary of Cisco’s vision on the topics therein. This book is not an official publication and does not
have an ISBN assigned. The book will always be free. The opinions expressed in this study guide and
its corresponding documentation belong to the author and do not necessarily represent those of Cisco. My
only request is that you not distribute this book yourself. Please direct your friends and colleagues to my
website where they can download it for free.

I wrote this book because I believe that free and open-source software is the way of the future. So too do I
believe that the manner in which this book is published represents the future of publishing. I hope this book
serves its obviously utility as a technical reference, but also as an inspiration for others to meaningfully
contribute to the open-source community.

Copyright 2021 Nicholas Russo http://njrusmc.net 2

https://twitter.com/nickrusso42518
https://www.linkedin.com/in/njrusmc
http://njrusmc.net
https://twitter.com/ipmess
https://twitter.com/iosxrqna
https://www.meetup.com/routergods
http://njrusmc.net


Contents

1 Cloud 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Infrastructure, platform, and software as a service (XaaS) . . . . . . . . . . . . . . . . . . . . 13
1.3 Performance, scalability, and high availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Security implications, compliance, and policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Workload migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Compute virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.1 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.2 Containers with Docker Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.3 Python Virtual Environments (venv) for Refactoring . . . . . . . . . . . . . . . . . . . . 28

1.7 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7.1 Virtual Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7.2 Software-Defined Wide Area Network (SD-WAN Viptela Demonstration) . . . . . . . . 33
1.7.3 Software-Defined Access (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.7.4 Software-Defined Data Center (SD-DC) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.8 Virtualization functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.8.1 Network Functions Virtualization infrastructure (NFVi) . . . . . . . . . . . . . . . . . . 40
1.8.2 Virtual Network Functions with NFVIS Demonstration . . . . . . . . . . . . . . . . . . 41

1.9 Automation and orchestration tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.9.1 Cloud Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.9.2 Digital Network Architecture Center (DNA-C) Demonstration . . . . . . . . . . . . . . 48
1.9.3 Kubernetes Orchestration with minikube Demonstration . . . . . . . . . . . . . . . . . 53
1.9.4 Amazon Web Services (AWS) CLI Demonstration . . . . . . . . . . . . . . . . . . . . 59
1.9.5 Infrastructure as Code using Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.9.6 Flask Application Monitoring with Prometheus . . . . . . . . . . . . . . . . . . . . . . 78

1.10 References and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2 Network Programmability 87
2.1 Data models and structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1.1 YANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.1.2 YAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.1.3 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.1.4 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.2 Device programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.2.1 Google Remote Procedure Call (gRPC) on IOS-XR using iosxr grpc . . . . . . . . . . 93
2.2.2 gRPC on IOS-XR using grpcio and Manual Compilation . . . . . . . . . . . . . . . . . 100
2.2.3 gRPC Network Management Interface (gNMI) on IOS-XR using gNMIc . . . . . . . . 111
2.2.4 Python paramiko Library on IOS-XE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.2.5 Python netmiko Library on IOS-XE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.2.6 NETCONF using netconf-console on IOS-XE . . . . . . . . . . . . . . . . . . . . . . . 122
2.2.7 NETCONF using Python and jinja2 on IOS-XE . . . . . . . . . . . . . . . . . . . . . . 126
2.2.8 REST API on IOS-XE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2.9 RESTCONF on IOS-XE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.3 Controller based network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.3.1 SDN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.3.2 Centralized SDN using OpenFlow and Faucet . . . . . . . . . . . . . . . . . . . . . . . 139

2.4 Configuration management tools and version control systems . . . . . . . . . . . . . . . . . . 145
2.4.1 Agent-based Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.4.2 Agent-less Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2.4.3 Agent-less Demonstration with Ansible (SSH/CLI) . . . . . . . . . . . . . . . . . . . . 147
2.4.4 NETCONF-based Infrastructure as Code with Ansible . . . . . . . . . . . . . . . . . . 150
2.4.5 RESTCONF-based Infrastructure as Code with Ansible . . . . . . . . . . . . . . . . . 155

Copyright 2021 Nicholas Russo http://njrusmc.net 3

http://njrusmc.net


2.4.6 Agent-less Demonstration with Nornir . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2.4.7 Version Control Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.4.8 Git with Github . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
2.4.9 Git with AWS CodeCommit and CodeBuild . . . . . . . . . . . . . . . . . . . . . . . . 168
2.4.10 Subversion (SVN) and comparison to Git . . . . . . . . . . . . . . . . . . . . . . . . . 176
2.4.11 Network Validation with Batfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.4.12 Data Validation with JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
2.4.13 Pre/Post Checks with Cisco pyATS and Genie . . . . . . . . . . . . . . . . . . . . . . 196

2.5 References and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3 Internet of Things 220
3.1 IoT Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.1.1 IoT Network Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3.1.2 Data Acquisition and Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.2 IoT standards and protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.3 IoT security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.4 IoT Edge and Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

3.4.1 Data Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
3.4.2 Edge Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

3.5 References and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4 Blueprint v1.0 Legacy Topics 234
4.1 Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

4.1.1 Troubleshooting and Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.1.2 OpenStack components with PackStack Demonstration . . . . . . . . . . . . . . . . . 234
4.1.3 Cloud Comparison Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.2 Network Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.2.1 SDN Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.2.2 DevOps methodologies, tools and workflows . . . . . . . . . . . . . . . . . . . . . . . 246
4.2.3 Basic Jenkins Setup Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

4.3 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.3.1 Performance, Reliability, and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5 Glossary of Terms 256

List of Figures

1 Public Cloud High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Private Cloud High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Virtual Private Cloud High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Connecting Cloud via Private WAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Connecting Cloud via IXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6 Connecting Cloud via Internet VPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Comparing Virtual Machines and Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Viptela SD-WAN High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9 Viptela Home Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10 Viptela Node Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11 Viptela Event Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12 Viptela Flow Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13 Viptela VoIP QoS Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Cisco ACI SD-DC High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
15 Cisco NFVIS Home Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
16 Cisco NFVIS Image Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Copyright 2021 Nicholas Russo http://njrusmc.net 4

http://njrusmc.net


17 Cisco NFVIS Image Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
18 Cisco NFVIS Topology Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19 Cisco NFVIS Log Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
20 DNA-C Home Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
21 DNA-C Geographic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
22 DNA-C Network Setings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
23 DNA-C Network Profile for VNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
24 DNA-C Images for Physical Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
25 DNA-C Images for Virtual Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
26 DNA-C Policy Main Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
27 DNA-C Site Topology Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
28 DNA-C Site Event Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
29 Kubernetes Main Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
30 Kubernetes Application Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
31 Kubernetes Application Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
32 Kubernetes Workload Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
33 Kubernetes Pods Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
34 AWS User/Group Assignments for Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
35 AWS EC2 Permissions for Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
36 Verifying EC2 Instances Made By Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
37 Verifying VPC Subnet Made By Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
38 Prometheus Target Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
39 Prometheus Counter Metric — Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
40 Prometheus Counter Metric — Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
41 Prometheus Gauge Metric — Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
42 Prometheus Gauge Metric — Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
43 Prometheus Histogram Metric — Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
44 Prometheus Histogram Metric — Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
45 SDN Model — Distributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
46 SDN Model — Augmented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
47 SDN Model — Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
48 SDN Model — Centralized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
49 SDN Communications Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
50 OpenFlow Testbed Topology in GNS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
51 Grafana Inventory Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
52 Grafana Port Statistics Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
53 Github Changes — Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
54 Github Changes — Detailed Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
55 Creating a New AWS IAM User and Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
56 Assigning AWS IAM Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
57 Creating a New AWS CodeCommit Repository . . . . . . . . . . . . . . . . . . . . . . . . . . 169
58 AWS CodeCommit README File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
59 AWS CodeCommit Repository with Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
60 AWS CodeCommit Fibonacci Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
61 AWS CodeBuild Build Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
62 AWS CodeBuild Build Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
63 AWS CodeBuild Build Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
64 AWS CodeCommit Build History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
65 SVN Repository — Initial Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
66 SVN Repository — Empty Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
67 SVN Repository — Files Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
68 SVN Repository — Viewing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
69 Batfish pandas Data Frame in HTML Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
70 pyATS Testbed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Copyright 2021 Nicholas Russo http://njrusmc.net 5

http://njrusmc.net


71 IoT Network Architecture High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
72 IoT Network Architecture With Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
73 Openstack Component Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
74 Openstack Projects Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
75 Openstack Projects Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
76 Openstack Edit Project Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
77 Openstack Edit Project Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
78 Openstack Launch Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
79 Openstack Launch Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
80 Openstack Launch Flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
81 Openstack Launch Security Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
82 Openstack Key Pair Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
83 Openstack Mapping Key Pair to Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
84 Openstack Instances (Compute) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
85 Openstack Instances (Volumes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
86 Cisco IWAN High Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
87 Jenkins git Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
88 Jenkins Personal Github Access Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
89 Jenkins Personal Access Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
90 Jenkins User-specific Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
91 Setting up Github Integration on Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
92 Github SSH Keys for Jenkins Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
93 Github Repository URL for Jenkins Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
94 Jenkins Source Code Management via git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
95 Jenkins Project Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
96 AWS EC2 Plugin for Jenkins Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
97 Adding Jenkins User in AWS IAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
98 Jenkins AWS Credential Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
99 Adding AWS Cloud Option via Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
100 Testing Connection from AWS to Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
101 Jenkins AMIs within EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

List of Tables

1 Cloud Design Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Cloud Security Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 NFV Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Git and SVN Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6 IoT Transport Protocol Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7 IoT Data Aggregation Protocol Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8 Commercial Cloud Provider Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9 Software Development Methodology Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 247

Copyright 2021 Nicholas Russo http://njrusmc.net 6

http://njrusmc.net


1 Cloud

1.1 Introduction

Cisco has defined cloud as follows:

IT resources and services that are abstracted from the underlying infrastructure and provided on-demand
and at scale in a multitenant environment.

Cisco identifies three key components from this definition that differentiate cloud deployments from ordinary
data center (DC) outsourcing strategies:

1. “On-demand” means that resources can be provisioned immediately when needed, released when no
longer required, and billed only when used.

2. “At-scale” means the service provides the illusion of infinite resource availability in order to meet
whatever demands are made of it.

3. “Multitenant environment” means that the resources are provided to many consumers from a single
implementation, saving the provider significant costs.

These distinctions are important for a few reasons. Some organizations joke that migrating to cloud is
simple; all they have to do is update their on-premises DC diagram with the words “Private Cloud” and
upper management will be satisfied. While it is true that the term “cloud” is often abused, it is important to
differentiate it from a traditional private DC.

Cloud architectures generally come in four variants:

1. Public: Public clouds are generally the type of cloud most people think about when the word “cloud”
is spoken. They rely on a third party organization (off-premises) to provide infrastructure where a
customer pays a subscription fee for a given amount of compute/storage, time, data transferred, or
any other metric that meaningfully represents the customer’s “use” of the cloud provider’s shared
infrastructure. Naturally, the supported organizations do not need to maintain the cloud’s physical
equipment. This is viewed by many businesses as a way to reduce capital expenses (CAPEX) since
purchasing new DC equipment is unnecessary. It can also reduce operating expenses (OPEX) since
the cost of maintaining an on-premises DC, along with trained staff, could be more expensive than
a public cloud solution. A basic public cloud design is shown in the diagram that follows; the enter-
prise/campus edge uses some kind of transport to reach the Cloud Service Provider (CSP) network.
The transport could be the public Internet, an Internet Exchange Point (IXP), a private Wide Area
Network (WAN), or something else.

Copyright 2021 Nicholas Russo http://njrusmc.net 7

http://njrusmc.net


Figure 1: Public Cloud High Level

2. Private: Like the joke above, this model is like an on-premises DC except it must supply the three
key ingredients identified by Cisco to be considered a “private cloud”. Specifically, this implies au-
tomation/orchestration, workload mobility, and compartmentalization must all be supported in an on-
premises DC to qualify. The organization is responsible for maintaining the cloud’s physical equip-
ment, which is extended to include the automation and provisioning systems. This can increase OPEX
as it requires trained staff. Like the on-premises DC, private clouds provide application services to a
given organization and multi-tenancy is generally limited to business units or projects/programs within
that organization (as opposed to external customers). The diagram that follows illustrates a high-level
example of a private cloud.

Figure 2: Private Cloud High Level

3. Virtual Private: A virtual private cloud is a combination of public and private clouds. An organization
may decide to use this to offload some (but not all) of its DC resources into the public cloud, while
retaining some things in-house. This can be seen as a phased migration to public cloud, or by some
skeptics, as a non-committal trial. This allows a business to objectively assess whether the cloud
is the “right business decision”. This option is a bit complex as it may require moving workloads
between public/private clouds on a regular basis. At the very minimum, there is the initial private-to-
public migration; this could be time consuming, challenging, and expensive. This design is sometimes
called a “hybrid cloud” and could, in fact, represent a business’ IT end-state. The diagram that follows

Copyright 2021 Nicholas Russo http://njrusmc.net 8

http://njrusmc.net


illustrates a high-level example of a virtual-private (hybrid) cloud.

Figure 3: Virtual Private Cloud High Level

4. Inter-cloud: Like the Internet (an interconnection of various autonomous systems provide reachability
between all attached networks), Cisco suggests that, in the future, the contiguity of cloud computing
may extend between many third-party organizations. This is effectively how the Internet works; a
customer signs a contract with a given service provider (SP) yet has access to resources from several
thousand other service providers on the Internet. The same concept could be applied to cloud and
this is an active area of research for Cisco.

Below is a based-on-a-true-story discussion that highlights some of the decisions and constraints relating
to cloud deployments.

1. An organization decides to retain their existing on-premises DC for legal/compliance reasons. By
adding automation/orchestration and multi-tenancy components, they are able to quickly increase
and decrease virtual capacity. Multiple business units or supported organizations are free to adjust
their security policy requirements within the shared DC in a manner that is secure and invisible to
other tenants; this is the result of compartmentalization within the cloud architecture. This deployment
would qualify as a “private cloud”.

2. Years later, the same organization decides to keep their most important data on-premises to meet
seemingly-inflexible Government regulatory requirements, yet feels that migrating a portion of their
private cloud to the public cloud is a solution to reduce OPEX long term. This increases the scalability
of the systems for which the Government does not regulate, such as virtualized network components
or identity services, as the on-premises DC is bound by CAPEX reductions. The private cloud footprint
can now be reduced as it is used only for a subset of tightly controlled systems, while the more generic
platforms can be hosted from a cloud provider at lower cost. Note that actually exchanging/migrating
workloads between the two clouds at will is not appropriate for this organization as they are simply
trying to outsource capacity to reduce cost. As discussed earlier, this deployment could be considered
a “virtual private cloud” by Cisco, but is also commonly referred to as a “hybrid cloud”.

3. Years later still, this organization considers a full migration to the public cloud. Perhaps this is made
possible by the relaxation of the existing Government regulations or by the new security enhance-

Copyright 2021 Nicholas Russo http://njrusmc.net 9

http://njrusmc.net


ments offered by cloud providers. In either case, the organization can migrate its customized systems
to the public cloud and consider a complete decommission of their existing private cloud. Such de-
commissioning could be done gracefully, perhaps by first shutting down the entire private cloud and
leaving it in “cold standby” before removing the physical racks. Rather than using the public cloud to
augment the private cloud (like a virtual private cloud), the organization could migrate to a fully public
cloud solution.

Cloud implementation can be broken into 2 main categories: how the cloud provider works, and how cus-
tomers connect to the cloud. The second question is more straightforward to answer and is discussed first.
There are three main options for connecting to a cloud provider, but this list is by no means exhaustive:

1. Private WAN (like MPLS L3VPN): Using the existing private WAN, the cloud provider is connected as
an extranet. To use MPLS L3VPN as an example, the cloud-facing PE exports a central service route-
target (RT) and imports corporate VPN RT. This approach could give direct cloud access to all sites
in a highly scalable, highly performing fashion. Traffic performance would (should) be protected under
the ISP’s SLA to cover both site-to-site customer traffic and site-to-cloud/cloud-to-site customer traffic.
The ISP may even offer this cloud service natively as part of the service contract. Certain services
could be collocated in an SP POP as part of that SP’s cloud offering. The private WAN approach
is likely to be expensive and as companies try to drive OPEX down, a private WAN may not even
exist. Private WAN is also good for virtual private (hybrid) cloud assuming the ISP’s SLA is honored
and is routinely measuring better performance than alternative connectivity options. Virtual private
cloud makes sense over private WAN because the SLA is assumed to be better, therefore the intra-
DC traffic (despite being inter-site) will not suffer performance degradation. Services could be spread
between the private and public clouds assuming the private WAN bandwidth is very high and latency
is very low, both of which would be required in a cloud environment. It is not recommended to do this
as the amount of intra-workflow bandwidth (database server on-premises and application/web server
in the cloud, for example) is expected to be very high. The diagram that follows depicts private WAN
connectivity assuming MPLS L3VPN. In this design, branches could directly access cloud resources
without transiting the main site.

Copyright 2021 Nicholas Russo http://njrusmc.net 10

http://njrusmc.net


Figure 4: Connecting Cloud via Private WAN

2. Internet Exchange Point (IXP): A customer’s network is connected via the IXP LAN (might be a
LAN/VLAN segment or a layer-2 overlay) into the cloud provider’s network. The IXP network is gen-
erally access-like and connects different organizations together so that they can peer with Border
Gateway Protocol (BGP) directly, but typically does not provide transit services between sites like a
private WAN. Some describe an IXP as a “bandwidth bazaar” or “bandwidth marketplace” where such
exchanges can happen in a local area. A strict SLA may not be guaranteed but performance would be
expected to be better than the Internet VPN. This is likewise an acceptable choice for virtual private
(hybrid) cloud but lacks the tight SLA typically offered in private WAN deployments. A company could,
for example, use internet VPNs for inter-site traffic and an IXP for public cloud access. A private WAN
for inter-site access is also acceptable.

Copyright 2021 Nicholas Russo http://njrusmc.net 11

http://njrusmc.net


Figure 5: Connecting Cloud via IXP

3. Internet VPN: By far the most common deployment, a customer creates a secure VPN over the
Internet (could be multipoint if outstations require direct access as well) to the cloud provider. It
is simple and cost effective, both from a WAN perspective and DC perspective, but offers no SLA
whatsoever. Although suitable for most customers, it is likely to be the most inconsistently performing
option. While broadband Internet connectivity is much cheaper than private WAN bandwidth (in terms
of price per Mbps), the quality is often lower. Whether this is “better” is debatable and depends on the
business drivers. Also note that Internet VPNs, even high bandwidth ones, offer no latency guarantees
at all. This option is best for fully public cloud solutions since the majority of traffic transiting this VPN
tunnel should be user service flows. The solution is likely to be a poor choice for virtual private clouds,
especially if workloads are distributed between the private and public clouds. The biggest drawback
of the Internet VPN access design is that slow cloud performance as a result of the “Internet” is
something a company cannot influence; buying more bandwidth is the only feasible solution. In this
example, the branches don’t have direct Internet access (but they could), so they rely on an existing
private WAN to reach the cloud service provider.

Copyright 2021 Nicholas Russo http://njrusmc.net 12

http://njrusmc.net


Figure 6: Connecting Cloud via Internet VPN

The answer to the first question detailing how a cloud provider network is built, operated, and maintained is
discussed in the remaining sections.

1.2 Infrastructure, platform, and software as a service (XaaS)

Cisco defines four critical service layers of cloud computing:

1. Software as a Service (SaaS) is where application services are delivered over the network on a sub-
scription and on-demand basis. A simple example would be to create a document but not installing the
appropriate text editor on a user’s personal computer. Instead, the application is hosted “as a service”
that a user can access anywhere, anytime, from any machine. SaaS is an interface between users
and a hosted application, often times a hosted web application. Examples of SaaS include Cisco We-
bEx, Microsoft Office 365, github.com, blogger.com, and even Amazon Web Services (AWS) Lambda
functions. This last example is particularly interesting since, according to Amazon, the “more gran-
ular model provides us with a much richer set of opportunities to align tenant activity with resource
consumption”. Being “serverless”, lambda functions execute a specific task based on what the cus-
tomer needs, and only the resources consumed during that task’s execution (compute, storage, and
network) are billed.

2. Platform as a Service (PaaS) consists of run-time environments and software development frame-
works and components delivered over the network on a pay-as-you-go basis. PaaS offerings are typi-
cally presented as API to consumers. Similar to SaaS, PaaS is focused on providing a complete devel-
opment environment for computer programmers to test new applications, typically in the development
(dev) phase. Although less commonly used by organizations using mostly commercial-off-the-shelf
(COTS) applications, it is a valuable offering for organizations developing and maintaining specific,
in-house applications. PaaS is an interface between a hosted application and a development/scripting
environment that supports it. Cisco provides WebEx Connect as a PaaS offering. Other examples

Copyright 2021 Nicholas Russo http://njrusmc.net 13

http://njrusmc.net


of PaaS include the specific-purpose AWS services like Route 53 for Domain Name Service (DNS)
support, CloudFront/CloudWatch for collecting performance metrics, and a wide variety of Relational
Database Service (RDS) offerings for storing data. The customer consumes these services but does
not have to maintain them (patching, updates, etc.) as part of their network operations.

3. Infrastructure as a Service (IaaS) is where compute, network, and storage are delivered over the
network on a pay-as-you-go basis. The approach that Cisco is taking is to enable service providers
to move into this area. This is likely the first thing that comes to mind when individuals think of
“cloud”. It represents the classic “outsourced DC” mentality that has existed for years and gives
the customer flexibility to deploy any applications they wish. Compared to SaaS, IaaS just provides
the “hardware”, roughly speaking, while SaaS provides both the underlying hardware and software
application running on it. IaaS may also provide a virtualization layer by means of a hypervisor. A
good example of an IaaS deployment could be a miniature public cloud environment within an SP
point of presence (POP) which provides additional services for each customer: firewall, intrusion
prevention, WAN acceleration, etc. IaaS is effectively an interface between an operating system and
the underlying hardware resources. More general-purpose EC2 services such as Elastic Compute
Cloud (EC2) and Simple Storage Service (S3) qualify as IaaS since the AWS’ management is limited
to the underlying infrastructure, not the objects within each service. The customer is responsible for
basic maintenance (patching, hardening, etc.) of these virtual instances and data products.

4. IT foundation is the basis of the above value chain layers. It provides basic building blocks to architect
and enable the above layers. While more abstract than the XaaS layers already discussed, the IT
foundation is generally a collection of core technologies that evolve over time. For example, DC
virtualization became very popular about 15 years ago and many organizations spent most of the
last decade virtualizing “as much as possible”. DC fabrics have also changed in recent years; the
original designs represented a traditional core/distribution/access layer design yet the newer designs
represent leaf/spine architectures. These are “IT foundation” changes that occur over time which help
shape the XaaS offerings, which are always served using the architecture defined at this layer. Cisco
views DC evolution in five phases:

(a) Consolidation: Driven mostly by business needs to reduce costs, this phase focused on reduc-
ing edge computing and reducing the number of total DCs within an enterprise. DCs started to
take form with two major components:

i. Data Center Network (DCN): Provides the underlying reachability between attached devices
in the DC, such as compute, storage, and management tools.

ii. Storage Area Network (SAN): While this may be integrated or entirely separate from the
DCN, it is a core component in the DC. Storage devices are interconnected over a SAN
which typically extends to servers needing to access the storage.

(b) Abstraction: To further reduce costs and maximize return on investment (ROI), this phase intro-
duces pervasive virtualization. This provides virtual machine/workload mobility and availability to
DC operators.

(c) Automation: To improve business agility, automation can rapidly and consistently “do things”
within a DC. These things include routine system management, service provisioning, or business-
specific tasks like processing credit card information.

(d) Cloud: With the previous phases complete, the cloud model of IT services delivered as a utility
becomes possible for many enterprises. Such designs may include a mix of public and private
cloud solutions.

(e) Intercloud: Discussed earlier, this is Cisco’s vision of cloud interconnection to generally mirror
the Internet concept. At this phase, internal and external clouds will coexist, federate, and share
resources dynamically.

Although not defined in formal Cisco documentation, there are many more flavors of XaaS. Below are some
additional examples of storage related services commonly offered by large cloud providers:

Copyright 2021 Nicholas Russo http://njrusmc.net 14

http://njrusmc.net


1. Database-as-a-Service: Some applications require databases, especially relational databases like
the SQL family. This service would provide the database itself and the ability for the database to
connect to the application so it can be utilized. AWS RDS services qualify as offerings in this category.

2. Object-Storage-as-a-Service: Sometimes cloud users only need access to files independent from a
specific application. Object storage is effectively a remote file share for this purpose, which in many
cases can also be utilized by an application internally. This service provides the object storage service
as well as the interfaces necessary for users and applications to access it. AWS S3 is an example of
this service, which in some cases is a subset of IaaS/PaaS.

3. Block-Storage-as-a-Service: These services are commonly tied to applications that require access
to the disks themselves. Applications can format the disks and add whatever file system is necessary,
or perhaps use the disk for some other purpose. This service provides the block storage assets (disks,
logical unit number or LUNs, etc.) and the interfaces to connect the storage assets to the applications
themselves. AWS Elastic Block Storage (EBS) is an example of this service.

This book provides a more complete look into popular cloud service offerings in the OpenStack section.
Note OpenStack was removed from the new v1.1 blueprint but was retained at the end of this book.

1.3 Performance, scalability, and high availability

Assessing the performance and reliability of cloud networks presents an interesting set of trade-offs. For
years, network designers have considered creating “failure domains” in the network so as to isolate faults.
With routing protocols, this is conceptually easy to understand, but often times difficult to design and imple-
ment, especially when considering business/technical constraints. Designing a DC comes with its own set
of trade-offs when identifying the “failure domains” (which are sometimes called “availability zones” within a
fabric), but that is outside the scope of this document. The real trade-offs with a cloud environment revolve
around the introduction of automation. Automation is discussed in detail elsewhere, but the trade-offs are
discussed here as they directly influence the performance and reliability of a system. Note that this discus-
sion is typically relevant for private and virtual private clouds, as a public cloud provider will always be large
enough to warrant several automation tools.

Automation usually reduces the total cost of ownership (TCO), which is desirable for any business. This
is the result of reducing the time (and labor wages) it takes for individuals to “do things”: provision a new
service, create a backup, add VLANs to switches, test MPLS traffic-engineering tunnel computations, etc.
The trade-off is that all software (including the automation system being discussed) requires maintenance,
whether that is in the form of in-house development or a subscription fee from a third-party. If in the form of
in-house development, software engineers are paid to maintain and troubleshoot the software which could
potentially be more expensive than just doing things manually, depending on how much maintenance and
unit testing the software requires. Most individuals who have worked as software developers (including the
author) know that bugs or feature requests always seem to pop up, and maintenance is continuous for any
non-trivial piece of code. Businesses must also consider the cost of the subscription for the automation
software against the cost of not having it (in labor wages). Typically this becomes a simple choice as the
network grows; automation often shines here. Automation is such a key component of cloud environments
because the cost of dealing with software maintenance is almost always less than the cost of a large IT
staff.

Automation can also be used for root cause analysis (RCA) whereby the tool can examine all the compo-
nents of a system to test for faults. For example, suppose an eBGP session fails between two organizations.
The script might test for IP reachability between the eBGP routers first, followed by verifying no changes to
the infrastructure access lists applied on the interface. It might also collect performance characteristics of
the inter-AS link to check for packet loss. Last, it might check for fragmentation on the link by sending large
pings with “don’t fragment” set. This information can feed into the RCA which is reviewed by the network
staff and presented to management after an outage.

The main takeaway is that automation should be deployed where it makes sense (TCO reduction) and
where it can be maintained with a reasonable amount of effort. Failing to provide the maintenance re-

Copyright 2021 Nicholas Russo http://njrusmc.net 15

http://njrusmc.net


sources needed to sustain an automation infrastructure can lead to disastrous results. With automation,
the “blast radius”, or potential scope of damage, can be very large. A real-life story from the author: when
updating SNMPv3 credentials, the wrong privacy algorithm was configured, causing 100% of devices to be
unmanageable via SNMPv3 for a short time. Correcting the change was easily done using automation, and
the business impact was minimal, but it negatively affected every router, switch, and firewall in the network.

Automation helps maximize the performance and reliability of a cloud environment. Another key aspect of
cloud design is accessibility, which assumes sufficient network bandwidth to reach the cloud environment.
A DC that was once located at a corporate site with 2,000 employees was accessible to those employees
over a company’s campus LAN architecture. Often times this included high-speed core and DC edge layers
whereby accessing DC resources was fast and highly available. With public cloud, the Internet/private WAN
becomes involved, so cloud access becomes an important consideration.

Achieving cloud scalability is often reliant on many components supporting the cloud architecture. These
components include the network fabric, the application design, the virtualization/segmentation design, and
others. The ability of cloud networks to provide seamless and simple interoperability between applications
can be difficult to assess. Applications that are written in-house will probably interoperate better in the
private cloud since the third-party provider may not have a simple mechanism to integrate with these custom
applications. This is very common in the military space as in-house applications are highly customized and
often lack standards-based APIs. Some cloud providers may not have this problem, but this depends
entirely on their network/application hosting software (OpenStack is one example discussed later in this
document). If the application is coded “correctly”, APIs would be exposed so that additional provider-hosted
applications can integrate with the in-house application. Too often, custom applications are written in a silo
where no such APIs are presented.

The table that follows compares access methods, reliability, and other characteristics of the different cloud
solutions.

Public Cloud Private Cloud Virtual Private
Cloud

Inter-Cloud

Network Access Often times relies
on Internet VPN,
but could also
use an Internet
Exchange (IX) or
private WAN

Corporate LAN or
WAN, which is
often private.
Could be
Internet-based if
SD-WAN
deployments (e.g.
Viptela) are
considered

Combination of
corporate WAN
for the private
cloud
components and
whatever the
public cloud
access method is

Same as public
cloud, except
relies on the
Internet as
transport
between
clouds/cloud
deployments

Reliability and
Accessibility

Heavily
dependent on
highly-available
and
high-bandwidth
links to the cloud
provider

Often times high
given the
common usage of
private WANs
(backed by carrier
SLAs)

Typically higher
reliability to
access the
private WAN
components, but
depends entirely
on the public
cloud access
method

Assuming
applications are
distributed,
reliability can be
quite high if at
least one “cloud”
is accessible
(anycast)

Copyright 2021 Nicholas Russo http://njrusmc.net 16

http://njrusmc.net


Fault Tolerance Typically high as
the cloud provider
is expected to
have a highly
redundant
architecture
based on cost

Often constrained
by corporate
CAPEX, tends to
be a bit lower
than a managed
cloud service
given the smaller
DCs

Unlike public or
private, the
networking link
between clouds is
an important
consideration for
fault tolerance

Assuming
applications are
distributed,
fault-tolerance
can be quite high
if at least one
“cloud” is
accessible
(anycast)

Performance Typically high as
the cloud provider
is expected to
have a very
dense
compute/storage
architecture

Often constrained
by corporate
CAPEX, tends to
be a bit lower
than a managed
cloud service
given the smaller
DCs

Unlike public or
private, the
networking link
between clouds is
an important
consideration,
especially when
applications are
distributed across
the two clouds

Unlike public or
private, the
networking link
between clouds is
an important
consideration,
especially when
applications are
distributed across
the two clouds

Scalability Appears to be
“infinite” which
allows the
customer to
provision new
services quickly

High CAPEX and
OPEX to expand
it, which limits
scale within a
business

Scales well given
public cloud
resources

Highest;
massively
distributed
architecture

Table 1: Cloud Design Comparison

1.4 Security implications, compliance, and policy

From a purely network-focused perspective, many would argue that public cloud security is superior to
private cloud security. This is the result of hiring an organization whose entire business revolves around
providing a secure, high-performing, and highly-available network. A business where “the network is not
the business” may be less inclined or less interested in increasing OPEX within the IT department, the
dreaded cost center. The counter-argument is that public cloud physical security is always questionable,
even if the digital security is strong. Should a natural disaster strike a public cloud facility where disk drives
are scattered across a large geographic region (tornado comes to mind), what is the cloud provider’s plan
to protect customer data? What if the data is being stored in a region of the world known to have unfriendly
relations towards the home country of the supported business? These are important questions to ask
because when data is in the public cloud, the customer never really knows exactly “where” the data is
physically stored. This uncertainty can be offset by using “availability zones” where some cloud providers
will ensure the data is confined to a given geographic region. In many cases, this sufficiently addresses
the concern for most customers, but not always. As a customer, it is also hard to enforce and prove this.
This sometimes comes with an additional cost, too. Note that disaster recovery (DR) is also a component
of business continuity (BC) but like most things, it has security considerations as well.

Privacy in the cloud is achieved mostly by introducing multi-tenancy separation. Compartmentalization at
the host, network, and application layers ensure that the entire cloud architecture keeps data private; that
is to say, customers can never access data from other customers. Sometimes this multi-tenancy can be
done as crudely as separating different customers onto different hosts, which use different VLANs and are
protected behind different virtual firewall contexts. Sometimes the security is integrated with an application
shared by many customers using some kind of public key infrastructure (PKI). Often times maintaining this
security and privacy is a combination of many techniques. Like all things, the security posture is a continuum

Copyright 2021 Nicholas Russo http://njrusmc.net 17

http://njrusmc.net


which could be relaxed between tenants if, for example, the two of them were partners and wanted to share
information within the same public cloud provider (like a cloud extranet).

The table that follows compares the security and privacy characteristics between the different cloud deploy-
ment options.

Public Cloud Private Cloud Virtual Private
Cloud

Inter-Cloud

Digital security Typically has best
trained staff,
focused on the
network and not
much else
(network is the
business)

Focused IT staff
but likely not
IT-focused upper
management
(network is likely
not the business)

Coordination
between clouds
could provide
attack surfaces,
but isn’t
wide-spread

Coordination
between clouds
could provide
attack surfaces
(like what
BGPsec is
designed to
solve)

Physical
security

One cannot
pinpoint their data
within the cloud
provider’s
network

Generally high as
a business knows
where the data is
stored, breaches
notwithstanding

Combination of
public and
private; depends
on application
component
distribution

One cannot
pinpoint their data
anywhere in the
world

Privacy Transport from
premises to cloud
should be
secured (Internet
VPN, secure
private WAN,
etc.)

Generally secure
assuming
corporate WAN is
secure

Need to ensure
any replicated
traffic between
public/private
clouds is
protected;
generally this is
true with site to
site VPNs

Need to ensure
any replicated
traffic between
distributed public
clouds is
protected;
customers can’t
perform it, but
cloud providers
should provide it

Table 2: Cloud Security Comparison

1.5 Workload migration

Workload mobility is a generic goal and has been around since the first virtualized DCs were created. This
gives IT administrators an increased ability to share resources amount different workloads within the virtual
DC (which could consist of multiple DCs connected across a Data Center Interconnect, or DCI). It also
allows workloads to be balanced across a collection of resources. For example, if 4 hosts exist in a cluster,
one of them might be performing more than 50% of the computationally-expensive work while the others
are underutilized. The ability to move these workloads is an important capability.

It is important to understand that workload mobility is not necessarily the same thing as VM mobility. For
example, a workload’s accessibility can be abstracted using anycast while the application exists in multiple
availability zones (AZ) spread throughout the cloud provider’s network. Using Domain Name System (DNS),
different application instances can be utilized based on geographic location, time of day, etc. The VMs have
not actually moved but the resource performing the workload may vary.

Although this concept has been around since the initial virtualization deployments, it is even more relevant
in cloud, since the massively scalable and potentially distributed nature of that environment is abstracted
into a single “cloud” entity. Using the cluster example from above, those 4 hosts might not even be in the
same DC, or even within the same cloud provider (with hybrid or Inter-cloud deployments). The concept

Copyright 2021 Nicholas Russo http://njrusmc.net 18

http://njrusmc.net


of workload mobility needs to be extended large-scale; note that this doesn’t necessarily imply layer-2
extensions across the globe. It simply implies that the workload needs to be moved or distributed differently,
which can be solved with geographically-based anycast solutions, for example.

As discussed in the automation/orchestration section above, orchestrating workloads is a major goal of
cloud computing. The individual tasks that are executed in sequence (and conditionally) by the orchestration
engine could be distributed throughout the cloud. The task itself (and the code for it) is likely centralized in
a code repository, which helps promote the “infrastructure as code” concept. The task/script code can be
modified, ultimately changing the infrastructure without logging into individual devices. This has CM benefits
for the managed device, since the device’s configuration does not need to be under CM at all anymore.

1.6 Compute virtualization

Conceptually, containers and virtual machines are similar in that they are a way to virtualize services/machines
on a single platform, effectively achieving multi-tenancy. The subsections of this section will focus on their
differences and use cases, rather than discuss them at the top-level section.

A brief discussion on two new design paradigms popular within any data center is warranted. Hyper-
convergence and disaggregation are polar opposites but are both highly effective in solving specific
business problems.

Hyper-convergence attempts to address issues with data center management and resource provisioning.
For example, the traditional DC architecture will consist of four main components: network, storage, com-
pute, and services (firewalls, load balancers, etc.). These decoupled items could be combined into a single
and unified management infrastructure. The virtualization and management layers are integrated into a
single appliance, and these appliances can be bolted together to scale-out linearly. Cisco sometimes refers
to this as the Lego block model. This reduces the capital investments a business must make over time
since the architecture need not change as the business grows. Hyper-converged systems, by virtue of their
integrated management solution, simplify life cycle management of DC assets as the “single pane of glass”
concept can be used to manage all components. Cisco’s Hyperflex (also called Flexpod) is an example of
a hyper-converged solution.

Disaggregation is the opposite of hyper-convergence in that rather than combining functions (storage, net-
work, and compute) into a single entity, it breaks them apart even further. A network appliance, such as a
router or switch, can be decoupled from its network operating system (NOS). A white box or brite box switch
can be purchased at low cost with some other NOS installed, such as Cumulus Linux. Cumulus generally
does not sell hardware, only a NOS, much like VMware. Server/computer disaggregation has been around
for decades since the introduction of the personal computer (PC) whereby the common Microsoft Windows
operating system was installed on machines from a variety of manufacturers. Disaggregation in the network
realm has been adopted more slowly but has merit for the same reasons.

1.6.1 Virtual Machines

Virtual machine systems rely on a hypervisor, which is a software shim that sits between the VMs them-
selves and the underlying hardware. The hardware chipset would need to support this virtualization, which
is a technique to present hardware to VMs through the hypervisor. Each VM has its own OS which is
independent from the hypervisor. Hypervisors come in two flavors:

1. Type 1: Runs on bare metal and is effectively an OS by itself. VMware ESXi and Linux Kernel-based
Virtual Machine (KVM) and are examples.

2. Type 2: Requires an underlying OS and provides virtualization services on top through a hardware
abstraction layer (HAL). VMware Workstation and VirtualBox are examples.

VMs are considered quite heavyweight with respect to the overhead needed to run them. This can reduce
the efficiency of a hardware platform as the VM count grows. It is especially inefficient when all of the VMs

Copyright 2021 Nicholas Russo http://njrusmc.net 19

http://njrusmc.net


run the same OS with very few differences other than configuration. A demonstration of virtual machines is
included in the NFVIS section of this document and is focused on virtual network functions (VNF).

1.6.2 Containers with Docker Demonstration

Containers on a given machine all share the same OS, unlike with VMs. This reduces the amount of
overhead, such as idle memory taxes, storage space for VM OS images, and the general maintenance
associated with maintaining VMs. Multi-tenancy is achieved by memory isolation, effectively segmenting the
different services deployed in different containers. There is still a thin software shim between the underlying
OS and the containers known as the container manager, which enforces the multi-tenancy via memory
isolation and other techniques.

The main drawback of containers is that all containers must share the same OS. For applications or ser-
vices where such behavior is desired (for example, a container per customer consuming a specific service),
containers are a good choice. As a general-purpose virtualization platform in environments where require-
ments may change often (such as military networks), containers are a poor choice.

Docker and Linux Containers (LXC) are popular examples of container engines. The image that follow is
from www.docker.com that compares VMs to containers at a high level.

Figure 7: Comparing Virtual Machines and Containers

This book does not detail the full Docker installation on CentOS because it is already well-documented and
not relevant to learning about containers. Once Docker has been installed, run the following verification
commands to ensure it is functioning correctly. Any modern version of Docker is sufficient to follow the
example that will be discussed.

[centos@docker build]$ which docker && docker --version

/usr/bin/docker

Docker version 17.09.1-ce, build 19e2cf6

Begin by running a new CentOS7 container. These images are stored on DockerHub and are automatically
downloaded when they are not locally present. For example, this machine has not run any containers yet,
and no images have been explicitly downloaded. Thus, Docker is smart enough to pull the proper image
from DockerHub and spin up a new container. This only takes a few seconds on a high-speed Internet
connection. Once complete, Docker drops the user into a new shell as the root user inside the container.
The -i and -t options enable an interactive TTY session, respectively, which is great for demonstrations.
Note that running Docker containers in the background is much more common as there are typically many
containers.

[centos@docker build]$ docker container run -it centos:7

Unable to find image 'centos:7' locally

7: Pulling from library/centos

Copyright 2021 Nicholas Russo http://njrusmc.net 20

www.docker.com
http://njrusmc.net


469cfcc7a4b3: Pull complete

Digest: sha256:989b936d56b1ace20ddf855a301741e52abca38286382cba7f44443210e96d16

Status: Downloaded newer image for centos:7

[root@088bbd2a7544 /]#

To verify that the correct container was downloaded, run the following command. Then, exit from the
container, as the only use for CentOS7 in our example is to serve as a “base” image for the custom Ansible
image to be created.

[root@088bbd2a7544 /]# cat /etc/redhat-release

CentOS Linux release 7.4.1708 (Core)

[root@088bbd2a7544 /]# exit

Exiting from the container effectively halts it, much like a process exiting in Linux. Two interesting things
have occurred. First, the image that was downloaded is now stored locally in the image list. The image
came from the “centos” repository with a tag of 7. Tags typically differentiate between variants of a common
image, such as version numbers or special features. Second, the container list shows a CentOS7 container
that recently exited. Every container gets a random hexadecimal ID and random text names for reference.
The output can be very long, and so has been edited to fit the page neatly.

[centos@docker build]$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

centos 7 e934aafc2206 7 weeks ago 199MB

[centos@docker build]$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

088bbd2a7544 centos:7 "/bin/bash" 1 minutes ago Exited (0) 31 s ago c wise_banach

To build a custom image, one creates a Dockerfile. It is a plain text file that closely resembles a shell script
and is designed to procedurally assemble the required components of a container image for use later. The
author already created a Dockerfile using a CentOS7 image as a basic image and added some additional
features to it. Every step has been commented for clarity.

Dockerfiles are typically written to minimize the both number of “layers” and amount of build time. Each
instruction generally qualifies as a layer. The more complex and less variable layers should be placed
towards the top of the Dockerfile, making them deeper layers. For example, installing key packages and
cloning the code necessary for the containers primary purpose occurs early. Layers that are more likely
to change, such as version-specific Ansible environment setup parameters, can come later. This way, if
the Ansible environment changes and the image needs to be rebuilt, only the layers at or after the point
of modification must be rebuilt. The base CentOS7 image and original yum package installations remain
unchanged, substantially reducing the image build time. Fewer RUN directives also results in fewer layers,
which explains the extensive use of && and \ in the Dockerfile.

[centos@docker build]$ cat Dockerfile

# Start from CentOS 7 base image.

FROM centos:7

# Perform a number of shell commands to prepare the image:

# * Update existing packages and install some new ones (alphabetical order)

# * Clear the yum cache to reduce image size

# * Minimally clone the specific branch to test

# * Set up ansible environment

# * Install PIP

# * Install remaining ansible requirements through pip

RUN yum update -y && \

yum install -y git \

tree \

Copyright 2021 Nicholas Russo http://njrusmc.net 21

http://njrusmc.net


which && \

yum clean all && \

\

git clone \

--branch command_authorization_failed_ios_regex \

--depth 1 \

--single-branch \

--recursive \

https://github.com/rcarrillocruz/ansible.git

# Setup the ansible environment and install dependencies via pip.

RUN /bin/bash -c "source /ansible/hacking/env-setup" && \

echo "source /ansible/hacking/env-setup -q" >> /root/.bashrc && \

\

curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py" && \

python get-pip.py && \

rm -f get-pip.py && \

\

pip install -r /ansible/requirements.txt

# When starting a shell, start here to save a "cd" command.

# The ansible.cfg file, along with example inventories and playbooks,

# are located in this directory.

WORKDIR /ansible/examples

# Verify ansible on this image is functional for a "healthy" status.

# This only checks that the Ansible binary is in our PATH. A more interesting

# check could be running a simple Ansible playbook or "ansible -{version",

# but for this demo, the check is kept very basic.

HEALTHCHECK --interval=5m CMD which ansible || exit 1

The Dockerfile is effectively a set of instructions used to build a custom image. To build the image based on
the Dockerfile, issue the command below. The -t option specifies a tag, and in this case, cmd_authz is used
since this particular Dockerfile is using a specific branch from a specific Ansible developer’s personal Github
page. It would be unwise to call this simple ansible or ansible:latest due to the very specific nature of
this container and subsequent test. Because the user is in the same directory as the Dockerfile, specify the .

to choose the current directory. Each of the 5 steps in the Dockerfile (FROM, RUN, RUN, WORKDIR, HEALTHCHECK)
are logged in the output below. The output looks almost identical to what one would see through stdout.

[centos@docker build]$ docker image build -t ansible:cmd_authz .

Sending build context to Docker daemon 7.168kB

Step 1/5 : FROM centos:7

---> e934aafc2206

Step 2/5 : RUN yum update -y && yum install -y git [snip]

Loaded plugins: fastestmirror, ovl

Determining fastest mirrors

* base: mirrors.lga7.us.voxel.net

* extras: repo1.ash.innoscale.net

* updates: repos-va.psychz.net

Resolving Dependencies

--> Running transaction check

---> Package acl.x86_64 0:2.2.51-12.el7 will be updated

[snip, many more packages]

Complete!

Loaded plugins: fastestmirror, ovl

Cleaning repos: base extras updates

Cleaning up everything

Cleaning up list of fastest mirrors

Copyright 2021 Nicholas Russo http://njrusmc.net 22

http://njrusmc.net


Cloning into 'ansible'...

---> b6b3ec4a0efb

Removing intermediate container 84f969f5ee06

Step 3/5 : RUN /bin/bash -c "source /ansible/hacking/env-setup" && [snip]

[snip, progress messages]

Done!

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 1603k 100 1603k 0 0 6836k 0 --:--:-- --:--:-- --:--:-- 6854k

Collecting pip

Downloading https://files.pythonhosted.org/packages/0f/74/ecd13431bcc [snip]

Collecting setuptools

[snip, pip installations]

Successfully installed MarkupSafe-1.0 [snip]

Removing intermediate container f8344dfe7384

Step 4/5 : WORKDIR /ansible/examples

---> 62ef1320c8da

Removing intermediate container f6b0e7ba51e1

Step 5/5 : HEALTHCHECK --interval=5m CMD which ansible || exit 1

---> Running in d17db16564d2

---> a8a6ac1b44e2

Removing intermediate container d17db16564d2

Successfully built a8a6ac1b44e2

Successfully tagged ansible:cmd_authz

Once complete, there will be a new image in the image list. Note that there are not any new containers,
since this image has not been run yet. It is ready to be instantiated as a container, or even pushed up
to DockerHub for others to use. Last, note that the container more than doubled in size. Because many
new packages were added for specific purposes, this makes the container less portable. Smaller is always
better, especially for generic images.

[centos@docker build]$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

ansible cmd_authz a8a6ac1b44e2 2 minutes ago 524MB

centos 7 e934aafc2206 7 weeks ago 199MB

For additional detail about this image, the following command returns extensive data in JSON format.
Docker uses a technique called layering whereby each command in a Dockerfile is a layer, and making
changes later in the Dockerfile won’t affect the lower layers. This is why the things least likely to change
should be placed towards the top, such as the base image, common package installs, etc. This reduces
image building time when Dockerfiles are changed.

[centos@docker build]$ docker image inspect a8a6ac1b44e2 | head -5

[

{

"Id": "sha256:a8a6ac1b44e28f654572bfc57761aabb5a92019c[snip]",

"RepoTags": [

"ansible:cmd_authz"

To run a container, use the same command shown earlier to start the CentOS7 container. Specify the image
name and in less than second, the new container is 100% operational. Ansible should be installed on this
container as part of the image creation process, so be sure to test this. Running the “setup” module on the
control machine (the container itself) should yield several lines of JSON output about the device itself. Note
that, towards the bottom of this output dump, ansible is aware that it is inside a Docker container.

[centos@docker build]$ docker container run -it ansible:cmd_authz

[root@04eb3ee71a52 examples]# which ansible && ansible -m setup localhost

Copyright 2021 Nicholas Russo http://njrusmc.net 23

http://njrusmc.net


/ansible/bin/ansible

localhost | SUCCESS => {

"ansible_facts": {

[snip, lots of information]

"ansible_virtualization_type": "docker",

"gather_subset": [

"all"

],

"module_setup": true

},

"changed": false

}

Next, create the playbook used to test the specific issue. The full playbook is shown below. For those not
familiar with Ansible at all, please see the Ansible demonstration in this book, or go to the author’s Github
page for many production-quality examples. This 3 step playbook is simple:

1. Define the login credentials so Ansible can log into the router.

2. Log into the router, enter configuration mode, and run “do show clock”. Store the output.

3. Print out the value of the output variable and look for the date/time in the JSON structure.

---

# issue31575.yml

- hosts: csr1.njrusmc.net

gather_facts: false

connection: network_cli

tasks:

- name: "SYS >> Define router credentials"

set_fact:

provider:

host: "{{ inventory_hostname }}"

username: "ansible"

password: "ansible"

- name: "IOS >> Run show command from config mode"

ios_config:

provider: "{{ provider }}"

commands: "do show clock"

match: none

register: output

- name: "DEBUG >> Print output"

debug:

var: output

...

Before running this playbook, a few Ansible adjustments are needed. First, adjust the ansible.cfg file to use
the hosts.yml inventory file and disable host key checking. Ansible needs to know which network devices
are in its inventory and how to handle unknown SSH keys.

[root@04eb3ee71a52 examples]# head -20 ansible.cfg

[snip, comments]

[defaults]

# some basic default values...

inventory = hosts.yml

host_key_checking = False

Copyright 2021 Nicholas Russo http://njrusmc.net 24

http://njrusmc.net


Next, ensure the inventory contains the specific router in question. In this case, it is a Cisco CSR1000v
running in AWS. Note that we would have used echo commands in our Dockerfile to address these issues
in advance, but this specific information makes the docker image less useful and less portable.

---

# hosts.yml

#

# This is the default ansible 'hosts' file.

#

# It should live in /etc/ansible/hosts

# but can be renamed to hosts.yml

all:

hosts:

csr1.njrusmc.net

Before connecting, ensure your container can use DNS to resolve the IP address for the router’s host-
name (assuming you are using DNS), and ensure the container can ping the router. This rules out any
networking problems. The author does not show the initial setup of the CSR1000v, which includes adding
a username/password of ansible/ansible, and nothing else.

[root@04eb3ee71a52 examples]# ping -c 3 csr1.njrusmc.net

PING csr1.njrusmc.net (18.x.x.x) 56(84) bytes of data.

64 bytes from ec2-18-x-x-x.x.com (18.x.x.x): icmp_seq=1 ttl=253 time=0.884 ms

64 bytes from ec2-18-x-x-x.x.com (18.x.x.x): icmp_seq=2 ttl=253 time=1.03 ms

64 bytes from ec2-18-x-x-x.x.com (18.x.x.x): icmp_seq=3 ttl=253 time=0.971 ms

--- csr1.njrusmc.net ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms

The last step executes the playbook from inside the container. This illustrates the original issue that the
ios config module, at the time of this writing, does not return device output. The author’s personal prefer-
ence is to always print the Ansible version number before running playbooks designed to test issues. This
reduces the likelihood of invalid test results due to version confusion. In the DEBUG step below, there is no
date/time output, which helps illustrate the Ansible issue that is being investigated.

[root@9bc07956b416 examples]# ansible --version | head -1

ansible 2.6.0dev0 (command_authorization_failed_ios_regex 5a1568c753) [snip]

[root@04eb3ee71a52 examples]# ansible-playbook issue31575.yml

PLAY [csr1.njrusmc.net] **************************************

TASK [SYS >> Define router credentials] **********************

ok: [csr1.njrusmc.net]

TASK [IOS >> Run show command from config mode] **************

changed: [csr1.njrusmc.net]

TASK [DEBUG >> Print output] *********************************

ok: [csr1.njrusmc.net] => {

"output": {

"banners": {},

"changed": true,

"commands": [

"do show clock"

],

"failed": false,

"updates": [

"do show clock"

]

Copyright 2021 Nicholas Russo http://njrusmc.net 25

http://njrusmc.net


}

}

PLAY RECAP ****************************************************

csr1.njrusmc.net : ok=3 changed=1 unreachable=0 failed=0

After exiting this container, check the list of containers again. Now, there were 2 containers in the past, the
newest one at the top. This was the Ansible container we just exited after completing our test. Again, some
output has been truncated to make the table fit neatly.

[centos@docker build]$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

04eb3ee71a52 ans:cmd_authz "/bin/bash" 33 m ago Exited (127) 7 s ago adoring_mestorf

088bbd2a7544 centos:7 "/bin/bash" 43 m ago Exited (0) 42 m ago wise_banach

This manual “start and stop” approach to containerization has several drawbacks. Two are listed below:

1. To retest this solution, the playbook would have to be created again, and the Ansible environment files
(ansible.cfg, hosts.yml) would need to be updated again. Because containers are ephemeral,
this information is not stored automatically.

2. The commands are difficult to remember and it can be a lot to type, especially when starting many
containers. Since containers were designed for microservices and expected to be deployed in depen-
dent groups, this management strategy scales poorly.

Docker includes a feature called docker-compose. Using YAML syntax, developers can specify all the
containers they want to start, along with any minor options for those containers, then execute the compose
file like a script. It is better than a shell script since it is more portable and easier to read. It is also an easy
way to add volumes to Docker. There are different kinds of volumes, but in short, volumes allow persistent
data to be passed into and retrieved from containers. In this example, a simple directory mapping (known
as a “bind mount” in Docker) is built from the local mnt_files/ folder to the container’s file system. In this
folder, one can copy the Ansible files (issue31575.yml, ansible.cfg, hosts.yml) so the container has
immediate access. While it is possible to handle volume mounting from the commands viewed previously,
it is tedious and complex.

# docker-compose.yml

version: '3.2'

services:

ansible:

image: ansible:cmd_authz

hostname: cmd_authz

# Next two lines are equivalent of -i and -t, respectively

stdin_open: true

tty: true

volumes:

- type: bind

source: ./mnt_files

target: /ansible/examples/mnt_files

The contents of these files was shown earlier, but ensure they are all placed in the mnt_files/ directory
with relation to where the docker-compose.yml file is located.

[centos@docker compose]$ tree --charset=ascii

.

|-- docker-compose.yml

`-- mnt_files

|-- ansible.cfg

|-- hosts.yml

`-- issue31575.yml

To run the docker-compose file, use the command below. It will build containers for all keys specified under

Copyright 2021 Nicholas Russo http://njrusmc.net 26

http://njrusmc.net


the services dictionary. In this case, there is only one container called ansible which is based on the
ansible:cmd_authz image created earlier from the custom Dockerfile. The -i and -t options are enabled to
allow for interactive shell access. The -d option with the docker-compose command specifies the “detach”
operation, which runs the containers in the background. View the list of containers to see the new Ansible
container running successfully.

[centos@docker compose]$ docker-compose up -d

Starting compose_ansible_1 ... done

[centos@docker compose]$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

d3f1365f3145 ans:cmd_authz "/bin/bash" 1 m ago Up 32 s (health: ...) compose_ansible_1

The command below says “execute, on the ansible container, the bash command” which grants shell ac-
cess. Ensure that the mnt_files/ directory exists and contains all the necessary files. Copy the contents
to the current directly, which will overwrite the basic ansible.cfg and hosts.yml files provided by Ansible.

[centos@docker compose]$ docker-compose exec ansible bash

[root@cmd_authz examples]# tree mnt_files/ --charset=ascii

mnt_files/

|-- ansible.cfg

|-- hosts.yml

`-- issue31575.yml

[root@cmd_authz examples]# cp mnt_files/* .

cp: overwrite './ansible.cfg'? y

cp: overwrite './hosts.yml'? y

Run the playbook again, and observe the same results as before. Now, assuming that this issue remains
open for a long period of time, docker-compose helps reduce the test setup time.

[root@cmd_authz examples]# ansible-playbook issue31575.yml

PLAY [csr1.njrusmc.net] ****************************************

TASK [SYS >> Define router credentials] ************************

[snip]

Exit from the container and check the container list again. Notice that, despite exiting, the container con-
tinues to run. This is because docker-compose created the container in a detached state, meaning the
absence of the shell does not cause the container to stop. Manually stop the container using the com-
mands below. Note that only the first few characters of the container ID can be used for these operations.

[centos@docker compose]$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

c16452e2a6b4 ansible:cmd_authz "/bin/bash" 12 m ago Up 10 m (health: ...) compose_ansible_1

04eb3ee71a52 ansible:cmd_authz "/bin/bash" 2 h ago Exited (127) 2 h ago adoring_mestorf

088bbd2a7544 centos:7 "/bin/bash" 2 h ago Exited (0) 2 h ago wise_banach

[centos@docker compose]$ docker container stop c16

c16

[centos@docker compose]$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

c16452e2a6b4 ansible:cmd_authz "/bin/bash" 12 m ago Exited (137) 1 m ago compose_ansible_1

04eb3ee71a52 ansible:cmd_authz "/bin/bash" 2 h ago Exited (127) 2 h ago adoring_mestorf

088bbd2a7544 centos:7 "/bin/bash" 2 h ago Exited (0) 2 h ago wise_banach

For total cleanup, delete these stale containers from the demonstration so that they are not accidentally
used for future use. Remember, containers are ephemeral, and should be built and discarded regularly.

Copyright 2021 Nicholas Russo http://njrusmc.net 27

http://njrusmc.net


[centos@docker compose]$ docker container rm c16 04e 088

c16

04e

088

[centos@docker compose]$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

[no further output]

1.6.3 Python Virtual Environments (venv) for Refactoring

Just as containers are lighter than virtual machines in terms of their computing and storage requirements,
virtual environments are lighter than containers. Python virtual environments, or “venv” for short, are ef-
fectively separate directory structures that contain separate storage areas for libraries, binaries, and other
information specific to a development effort. The demonstration in this section is based on a real-life Ansible
refactoring effort of the author’s free open-source Ansible projects.

When Ansible network modules such as ios_command and ios_config were introduced, they required
provider dictionaries to log into network devices. This dictionary wrapped basic login information such
as hostname/IP address, username, password, and timeouts into a single dictionary object. While this
technique was brilliant for its day, the Ansible team acknowledged that this made network devices “different”
and having a unified SSH access method would be a better long-term solution. These features were
introduced in Ansible 2.5, but suppose you wrote all your playbooks in Ansible 2.4. How could you safely
run two versions of Ansible on a single machine to perform the necessary refactoring? Python virtual
environments (venv for short) are a good solution to this problem.

First, create a new venv for Ansible 2.4.2 to demonstrate the now-deprecated provider dictionary method.
The command below creates a new directory called ansible242/ and populates it with many files needed
to create a separate development environment. This book does not explore the inner workings of venv, but
does include a link in the references section.

[ec2-user@devbox venv]$ virtualenv ansible242

New python executable in /home/ec2-user/venv/ansible242/bin/python2

Also creating executable in /home/ec2-user/venv/ansible242/bin/python

Installing setuptools, pip, wheel...done.

[ec2-user@devbox venv]$ ls -l

total 0

drwxrwxr-x. 5 ec2-user ec2-user 82 Aug 22 07:06 ansible242

[ec2-user@devbox venv]$ ls -l ansible242/

total 4

drwxrwxr-x. 2 ec2-user ec2-user 248 Aug 22 07:06 bin

drwxrwxr-x. 2 ec2-user ec2-user 23 Aug 22 07:06 include

drwxrwxr-x. 3 ec2-user ec2-user 23 Aug 22 07:06 lib

lrwxrwxrwx. 1 ec2-user ec2-user 3 Aug 22 07:06 lib64 -> lib

-rw-rw-r--. 1 ec2-user ec2-user 59 Aug 22 07:06 pip-selfcheck.json

The purpose of venv is to create a virtual Python workspace, so any Python utilities and libraries should
be used within the venv. To activate the venv, use the source command to update your current shell. The
prompt changes to show the venv name at the far left. Use which to reveal that the pip binary has been
selected from within the venv.

[ec2-user@devbox venv]$ which pip

/usr/bin/pip

[ec2-user@devbox venv]$ cd ansible242/

[ec2-user@devbox ansible242]$ source bin/activate

Copyright 2021 Nicholas Russo http://njrusmc.net 28

https://github.com/nickrusso42518/
http://njrusmc.net


(ansible242) [ec2-user@devbox ansible242]$ which pip

~/venv/ansible242/bin/pip

At this point, custom packages can be installed within the venv without interfering with the platform-level
Python packages, if any exist.

(ansible242) [ec2-user@devbox ansible242]$ ls -l lib/python2.7/site-packages/

total 16

-rw-rw-r--. 1 ec2-user ec2-user 126 Aug 22 07:06 easy_install.py

-rw-rw-r--. 1 ec2-user ec2-user 317 Aug 22 07:06 easy_install.pyc

drwxrwxr-x. 4 ec2-user ec2-user 116 Aug 22 07:06 pip

drwxrwxr-x. 2 ec2-user ec2-user 130 Aug 22 07:06 pip-18.0.dist-info

drwxrwxr-x. 4 ec2-user ec2-user 117 Aug 22 07:06 pkg_resources

drwxrwxr-x. 5 ec2-user ec2-user 4096 Aug 22 07:06 setuptools

drwxrwxr-x. 2 ec2-user ec2-user 174 Aug 22 07:06 setuptools-40.2.0.dist-info

drwxrwxr-x. 4 ec2-user ec2-user 4096 Aug 22 07:06 wheel

drwxrwxr-x. 2 ec2-user ec2-user 130 Aug 22 07:06 wheel-0.31.1.dist-info

Install the correct version of Ansible using pip, and then check the site-packages within the venv to see that
Ansible 2.4.2 has been installed.

(ansible242) [ec2-user@devbox ansible242]$ pip install ansible==2.4.2.0

Collecting ansible==2.4.2.0

Collecting cryptography (from ansible==2.4.2.0)

[snip, many packages]

Successfully installed MarkupSafe-1.0 PyYAML-3.13 ansible-2.4.2.0 [snip]

(ansible242) [ec2-user@devbox ansible242]$ ls -l lib/python2.7/site-packages/

total 1040

drwxrwxr-x. 17 ec2-user ec2-user 4096 Aug 22 07:09 ansible

drwxrwxr-x. 2 ec2-user ec2-user 87 Aug 22 07:09 ansible-2.4.2.0.dist-info

[snip, many packages]

drwxrwxr-x. 2 ec2-user ec2-user 4096 Aug 22 07:09 yaml

(ansible242) [ec2-user@devbox ansible242]$ ansible --version

ansible 2.4.2.0

The venv now has a functional Ansible 2.4.2 environment where playbook development can begin. This
demonstration shows a simple login playbook that the author has used in production just to SSH into all
devices. It’s the Cisco IOS equivalent of the Ansible ping module which is used primarily for testing SSH
reachability to Linux hosts. The source code is shown below. Note that there are only two variables defined.
The first tells Ansible which Python binary to use to ensure the proper libraries are used. A fully qualified file
name must be used as shortcuts like ~ are not allowed. The second variable is a nested login credentials
dictionary.

(ansible242) [ec2-user@devbox login]$ tree --charset=ascii

.

|-- group_vars

| `-- routers.yml

|-- inv.yml

`-- login.yml

---

# group_vars/routers.yml

ansible_python_interpreter: "/home/ec2-user/venv/ansible242/bin/python"

login_creds:

host: "{{ inventory_hostname }}"

username: "ansible"

password: "ansible"

...

Copyright 2021 Nicholas Russo http://njrusmc.net 29

http://njrusmc.net


---

# inv.yml

all:

children:

routers:

hosts:

csr1:

...

---

# login.yml

- name: "Login to all routers"

hosts: routers

connection: local

gather_facts: false

tasks:

- name: "Run 'show clock' command"

ios_command:

provider: "{{ login_creds }}"

commands: "show clock"

...

Running the playbook with the custom inventory (containing one router called csr1) and verbosity enabled
so the CLI output is printed to standard output.

(ansible242)[ec2-user@devbox login]$ ansible-playbook login.yml -i inv.yml -v

Using /etc/ansible/ansible.cfg as config file

PLAY [Login to all routers] ***********************************************

TASK [Run 'show clock' command] *******************************************

ok: [csr1] => {

"changed": false

}

STDOUT:

[u'*11:26:15.420 UTC Wed Aug 22 2018']

PLAY RECAP ****************************************************************

csr1 : ok=1 changed=0 unreachable=0 failed=0

With the first test complete, exit the venv using the deactivate command, which is a custom binary specific
to venv that effectively reverses what the source bin/activate command did. The shell returns to normal.
Note that the deactivate command only exists inside of the venv.

(ansible242) [ec2-user@devbox login]$ deactivate

[ec2-user@devbox login]$

[ec2-user@devbox login]$ which deactivate

/usr/bin/which: no deactivate in (/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin)

To refactor this playbook from the old provider-style login to the new network_cli login, create a second
venv alongside the existing one. It is is named ansible263 which is the current version of Ansible at the
time of this writing. The steps are shown below but are not explained in detail as they were in the first
example.

[ec2-user@devbox venv]$ virtualenv ansible263

New python executable in /home/ec2-user/venv/ansible263/bin/python2

Also creating executable in /home/ec2-user/venv/ansible263/bin/python

Installing setuptools, pip, wheel...done.

Copyright 2021 Nicholas Russo http://njrusmc.net 30

http://njrusmc.net


[ec2-user@devbox venv]$ cd ansible263/

[ec2-user@devbox ansible263]$ source bin/activate

(ansible263) [ec2-user@devbox ansible263]$ pip install ansible==2.6.3

Collecting ansible==2.6.3

Collecting PyYAML (from ansible==2.6.3)

[snip, many packages]

Successfully installed MarkupSafe-1.0 PyYAML-3.13 ansible-2.6.3 [snip]

\begin{minted}{text}

(ansible263) [ec2-user@devbox login]$ ansible --version

ansible 2.6.3

Ansible playbook development can begin now, and to save some time, recursively copy the login playbook
from the old venv into the new one. Because Python virtual environments are really just separate directory
structures, moving source code between them is easy. It is worth noting that source code does not have
to exist inside a venv. It may exist in one specific location and the refactoring effort could be done on a
version control feature branch. In this way, multiple venvs could access a common code base. In this
simple example, code is copied between venvs.

(ansible263) [ec2-user@devbox ansible263]$ cp -R ../ansible242/login/ .

(ansible263) [ec2-user@devbox ansible263]$ tree login/ --charset=ascii

login/

|-- group_vars

| `-- routers.yml

|-- inv.yml

`-- login.yml

Modify the group variables and playbook files according to the code shown below. Rather than define
a custom dictionary with login credentials, one can specify some values for the well-known Ansible login
parameters. At the playbook, the connection changes from local to network_cli and the inclusion of the
provider key under ios_command is no longer needed. Last, note that the Python interpreter path is updated
for this specific venv using the directory ansible263/.

---

# group_vars/routers.yml

ansible_python_interpreter: "/home/ec2-user/venv/ansible263/bin/python"

ansible_network_os: "ios"

ansible_user: "ansible"

ansible_ssh_pass: "ansible"

...

---

# login.yml

- name: "Login to all routers"

hosts: routers

connection: network_cli

gather_facts: false

tasks:

- name: "Run 'show clock' command"

ios_command:

commands: "show clock"

...

Running this playbook should yield the exact same behavior as the original playbook except modernized
for the new version of Ansible. Using virtual environments to accomplish this simplifies library and binary
executable management when testing multiple versions.

(ansible263)[ec2-user@devbox login]$ ansible-playbook login.yml -i inv.yml -v

Copyright 2021 Nicholas Russo http://njrusmc.net 31

http://njrusmc.net


Using /etc/ansible/ansible.cfg as config file

PLAY [Login to all routers] ***********************************************

TASK [Run 'show clock' command] *******************************************

ok: [csr1] => {

"changed": false

}

STDOUT:

[u'*11:39:28.966 UTC Wed Aug 22 2018']

PLAY RECAP ****************************************************************

csr1 : ok=1 changed=0 unreachable=0 failed=0

1.7 Connectivity

Network virtualization is often misunderstood as being something as simple as “virtualize this device using
a hypervisor and extend some VLANs to the host”. Network virtualization is really referring to the creation of
virtual topologies using a variety of technologies to achieve a given business goal. Sometimes these virtual
topologies are overlays, sometimes they are forms of multiplexing, and sometimes they are a combination
of the two. Here are some common examples (not a complete list) of network virtualization using well-
known technologies. Before discussing specific technical topics like virtual switches and SDN, it is worth
discussing basic virtualization techniques upon which all of these solutions rely.

1. Ethernet VLANs using 802.1q encapsulation. Often used to create virtual networks at layer 2
for security segmentation, traffic hair pinning through a service chain, etc. This is a form of data
multiplexing over Ethernet links. It isn’t a tunnel/overlay since the layer 2 reachability information
(MAC address) remains exposed and used for forwarding decisions.

2. VPN Routing and Forwarding (VRF) tables or other layer-3 virtualization techniques. Similar
uses as VLANs except virtualizes an entire routing instance, and is often used to solve a similar set of
problems. Can be combined with VLANs to provide a complete virtual network between layers 2 and
3. Can be coupled with GRE for longer-range virtualization solutions over a core network that may or
may not have any kind of virtualization. This is a multiplexing technique as well but is control-plane
only since there is no change to the packets on the wire, nor is there any inherent encapsulation (not
an overlay).

3. Frame Relay DLCI encapsulation. Like a VLAN, creates segmentation at layer 2 which might be
useful for last-mile access circuits between PE and CE for service multiplexing. The same is true
for Ethernet VLANs when using EV services such as EV-LINE, EV-LAN, and EV-TREE. This is a
data-plane multiplexing technique specific to Frame Relay.

4. MPLS VPNs. Different VPN customers, whether at layer 2 or layer 3, are kept completely isolated by
being placed in a separate virtual overlay across a common core that has no/little native virtualization.
This is an example of an overlay type of virtual network.

5. Virtual eXtensible Area Network (VXLAN). Just like MPLS VPNs; creates virtual overlays atop a
potentially non-virtualized core. VXLAN is a MAC-in-IP/UDP tunneling encapsulation designed to
provide layer-2 mobility across a data center fabric with an IP-based underlay network. The advantage
is that the large layer-2 domain, while it still exists, is limited to the edges of the network, not the
core. VXLAN by itself uses a “flood and learn” strategy so that the layer-2 edge devices can learn
the MAC addresses from remote edge devices, much like classic Ethernet switching. This is not a
good solution for large fabrics where layer-2 mobility is required, so VXLAN can be paired with BGP’s
Ethernet VPN (EVPN) address family to provide MAC routing between endpoints. Being UDP-based,
the VXLAN source ports can be varied per flow to provide better underlay (core IP transport) load

Copyright 2021 Nicholas Russo http://njrusmc.net 32

http://njrusmc.net


sharing/multipath routing, if required.

6. Network Virtualization using Generic Routing Encapsulation (NVGRE). This technology extends
classic GRE tunneling to include a subnet identifier within the GRE header, allowing GRE to tunnel
layer-2 Ethernet frames over IP/GRE. The use cases for NVGRE are also identical to VXLAN except
that, being a GRE packet, layer-4 port-based load sharing is not supported. Some devices can support
GRE key-based hashing, but this does not have flow-level visibility.

7. OTV. Just like MPLS VPNs; creates virtual overlays atop a potentially non-virtualized core, except
provides a control-plane for MAC routing. IP multicast traffic is also routed intelligently using GRE
encapsulation with multicast destination addresses. This is another example of an overlay type of
virtual network.

1.7.1 Virtual Switches

The term “virtual switch” has multiple meanings. As discussed in the previous section, the most generic
interpretation of the term would be “VLAN”. A VLAN is, quite literally, a virtual switch, which shares the
same hardware as all the other VLANs next to it, but remains logically isolated. Along these lines, a VRF is
a virtual router and a Cisco ASA context is a virtual firewall.

However, it is likely that this section of the Evolving Technologies blueprint is more interested in discussing
virtual switches in the context of hypervisors. Simply put, a virtual switch serves as a bridge between
the applications and the physical network. Virtual machines map their virtual NICs to the virtual switch
ports, much like a physical server connects into a data center access switch. The virtual switches are also
connected to the physical server NICs, often times with 802.1q VLAN trunking enabled, just like a real
switch. Each port (or group of ports) can map to a single VLAN, providing VLAN-tagged transport to the
physical network and untagged transport to the applications, as expected. Some engineers prefer to think
about virtual switches as the true access switch in the network, with the top of rack (TOR) switch being an
aggregation device of sorts.

There are many types of virtual switches:

1. Standalone/basic: As described above, these switches support basic features such as access ports,
trunk ports, and some basic security settings such as policing, and MAC spoof protection. They are
independently managed on each server, and while simple to build, they become difficult to maintain
as the data center computing environment scales.

2. Distributed: A distributed virtual switch is managed as a single entity despite being spread across
many servers. Loosely analogous to Cisco StackWise or Virtual Switching System (VSS) technolo-
gies, this reduces the management burden. The individual servers still have local switches that
can tolerate a management outage, but are centrally managed. Distributed virtual switches tend
to have more features than standalone ones, such as LACP, QoS, private VLANs, Netflow, and more.
VMware’s distribution virtual switch (DVS) is available in vCenter-enabled deployments and is one
such example.

3. Vendor-specific software: Several vendors offer software-based virtual switches with comprehen-
sive feature sets. Cisco’s Nexus 1000v, for example, is one such product. These solutions typically of-
fer strong CLI/API support for better integration into a uniform management strategy. Other solutions
may even be integrated with the hypervisor’s management system despite being add-on products.
Many modern virtual switches can, for example, terminate VXLAN tunnels. This brings multi-tenancy
all the way to the server without introducing the complexity into the data center physical switches.

1.7.2 Software-Defined Wide Area Network (SD-WAN Viptela Demonstration)

The Viptela SD-WAN solution provides a highly capable and adaptive WAN solution to help customers
reduce WAN costs (OPEX and CAPEX), gain additional performance/monitoring insight, and optimize per-
formance. It has four main components:

Copyright 2021 Nicholas Russo http://njrusmc.net 33

http://njrusmc.net


1. vSmart Controller: The centralized control-plane and policy injection service for the network.

2. vEdge: The branch device that registers to the vSmart controllers to receive policy updates. Each
vEdge router requires about 100 kbps of bandwidth back to the vSmart controller.

3. vManage: The single-pane-of-glass management front-end that provides visibility, analytics, and easy
policy adjustment.

4. vBond: Technology used for Zero Touch Provisioning (ZTP), enabling the vEdge devices to discover
available vSmart controllers. This component is effectively a communications broker between SD-
WAN endpoints (vEdge) and their controllers (vSmart).

The control-plane is TLS-based and is formed between vEdge devices and vSmart controllers. The digital
certificates for Viptela’s PKI solution are internal and easily managed within vManage; a complex, preexist-
ing PKI is not necessary. The routing design is similar in logic to BGP route-reflectors whereby individual
vEdge devices can send traffic directly between one another without directly exchanging any reachabil-
ity/policy information. To provide high-scale network services, the Overlay Management Protocol (OMP)
is a BGP-like protocol that carries a variety of attributes. These attributes include application/QoS specific
routing policy, multicast routing information, IPsec keys, and more.

The solution supports both IPsec ESP and GRE data-plane encapsulations for its overlay networks. Be-
cause OMP carries IPsec keys within the system’s control-plane, Internet Key Exchange (IKE) between
vEdge endpoints is unnecessary. This optimization obviates the need for IKE, reducing both vEdge device
state and spoke-to-spoke tunnel setup time.

Like many SD-WAN solutions, Viptela can classify traffic based on traditional mechanisms such as ports,
protocols, IP addresses, and DSCP values. It can also perform application-specific classification with poli-
cies tuned for each specific application. All policies are configured through the vManage interface which
are then communicated to the controller. The controller then communicates this to the vEdge devices.

Although the definitions are imperfect, it is mostly correct to say that the vManage-to-vSmart controller
interface is a northbound interface (except that vManage is a management console, not a business appli-
cation). Likewise, the vSmart-to-vEdge interface is like a southbound interface. Also note that, unlike truly
centralized control planes, the failure of a vSmart controller or the path by which a vEdge uses to reach a
vSmart controller results in the vEdge reverting back to the last applied policy. This means that the WAN
can function like a distributed control-plane provided changes are not needed. As such, the Viptela solution
can be generally classified as a hybrid SDN solution.

ZTP relies on vBond, which is an orchestration process that allows vEdge devices to join the SD-WAN
instance without any pre-configuration on the remote devices. Each device comes with an embedded SSL
certificate stored within a Trusted Platform Module (TPM). Via vManage, the network administrator can trust
or not trust this particular client device. Revoking trust for a device is useful for cases where the vEdge is
lost or stolen, much like issuing a Certificate Revocation List (CRL). Once the trust settings are updated,
vManage notifies the vSmart controllers so they can accept or reject the SSL sessions from vEdge devices.

The Viptela SD-WAN solution also supports network-based multi-tenancy. A 4-byte shim header called a
label (not to be confused with MPLS labels) is added to each packet within a specific tenant’s overlay as a
membership identifier. As such, Viptela can tie into existing networks using technologies like VRF + VLAN
in a back-to-back fashion, much like Inter-AS MPLS Option A (RFC 4364 Section 10a). The diagram that
follows summarizes Viptela at a high level.

Copyright 2021 Nicholas Russo http://njrusmc.net 34

http://njrusmc.net


Figure 8: Viptela SD-WAN High Level

The remainder of this section walks through a high-level demonstration of the Viptela SD-WAN solution’s
various interfaces. Upon login to vManage, the centralized and multi-tenant management system, the user
is presented with a comprehensive dashboard. At its most basic, the dashboard alerts the administrator to
any obvious issues, such as sites being down or other errors needing repair.

Figure 9: Viptela Home Dashboard

Clicking on the vEdge number “4”, one can explore the status of the four remote sites. While not particularly
interesting in a network where everything is working, this provides additional details about the sites in the
network, and is a good place to start troubleshooting when issues arise.

Copyright 2021 Nicholas Russo http://njrusmc.net 35

http://njrusmc.net


Figure 10: Viptela Node Summary

Next, the administrator can investigate a specific node in greater detail to identify any faults recorded in the
event log. The screenshot on the following page is from SDWAN4, which provides a visual representation
of the current events and the text details in one screen.

Figure 11: Viptela Event Logging

The screenshot below depicts the bandwidth consumed between different hosts on the network. More
granular details such as ports, protocols, and IP addresses are available between the different monitoring
options from the left-hand pane. This screenshot provides output from the “Flows” option on the SDWAN4
node, which is a physical vEdge-100m appliance.

Copyright 2021 Nicholas Russo http://njrusmc.net 36

http://njrusmc.net


Figure 12: Viptela Flow Exploration

Last, the solution allows for granular flow-based policy control, similar to traditional policy-based routing,
except centrally controlled and fully dynamic. The screenshot below shows a policy to match DSCP 46,
typically used for expedited forwarding of inelastic, interactive VOIP traffic. The preferred color (preferred
link in this case) is the direct Ethernet-based Internet connection this particular node has. Not shown
is the backup 4G LTE link this vEdge-100m node also has. This link is slower, higher latency, and less
preferable for voice transport, so we administratively prefer the wireline Internet link. Not shown is the SLA
configuration and other policy parameters to specify the voice performance characteristics that must be
met. For example: 150 ms one way latency, less than 0.1% packet loss, and less than 30 ms jitter. If the
wireline Internet exceeds any of these thresholds, the vSmart controllers with automatically start using the
4G LTE link, assuming that its performance is within the SLA’s specification.

Figure 13: Viptela VoIP QoS Policy

For those interested in replicating this demonstration, please visit Cisco dCloud. Note that the com-
pute/storage requirements for these Cisco SD-WAN components is very low, making it easy to run almost
anywhere. The only exception is the vManage component and its VM requirements can be found here. The
VMs can be run either on VMware ESXi or Linux KVM-based hypervisors (which includes Cisco NFVIS
discussed later in this book).

1.7.3 Software-Defined Access (SDA)

Cisco’s SDA architecture is a holistic, intent-based networking solution designed for enterprises to operate,
maintain, and secure their access layer networks. Campus Fabric is one of the core components of this
design, and is of particular interest to network engineers.

Cisco’s Campus Fabric is a main component of the Digital Network Architecture (DNA), a major Cisco
networking initiative. Campus Fabric relies on a VXLAN-based data plane, encapsulating traffic at the
edges of the fabric inside IP packets to provide L2VPN and L3VPN service. Any Scalable Group Tags
(SGT) along with the VXLAN Virtual Network ID (VNI) are carried in the VXLAN header, giving the overlay
network some ability to apply policy to production traffic. Campus Fabric was designed with mobility, scale,

Copyright 2021 Nicholas Russo http://njrusmc.net 37

https://dcloud.cisco.com/
https://sdwan-docs.cisco.com/Product_Documentation/Getting_Started/Hardware_and_Software_Installation/Server_Hardware_Recommendations
http://njrusmc.net


and performance in mind.

The solution uses Location/Identification Separation Protocol (LISP) as its control-plane. LISP is like a
combination of DNS and NHRP as a mapping server binds endpoint IDs (EIDs) to routing locations (RLOCs)
in a centralized manner. Like NHRP, LISP is a reactive control plane whereby EIDs are exchanged between
endpoints via “conversational learning”. That is to say, edge nodes don’t retain all state at all times, but
rather only when it is needed. The initial setup of communications between two nodes when the state is
absent can take some time as LISP converges. Unlike DNS, the LISP mapping server does not reply directly
to LISP edge nodes as such a reply is not a guarantee that two edge nodes can actually communicate. The
LISP mapping server forwards the request to the remote edge node authoritative for a given EID, which
generates the response. This behavior is similar to how NHRP works in DMVPN phases 2 and 3 when
spoke-to-spoke tunnels are dynamically built.

Campus Fabric offers separation using both policy-based segmentation via Security Group Tags (SGT)
and network-based segmentation via VXLAN/LISP. These options are not mutually exclusive and can be
deployed together for even better separation between virtual networks. Extending virtual networks outside
of the fabric is done using VRF-Lite in an MPLS Inter-AS Option A fashion, effectively extending the virtual
networks without merging the control-planes. This architecture can be thought of like an SD-LAN although
Cisco (and the industry in general) do not use this term. The IP routed underlay is kept simple with complex,
tenant-specific overlays added on top according to the business needs.

Note that Campus Fabric is the LAN networking component of the overall SDA architecture. Fabric border
nodes are similar to fabric edge nodes (access switches) except that they connect the fabric to upstream
resources, such as the core network. This is how users access other places in the network, such as WAN,
data center, Internet edge, etc. DNA-C, ISE, Network Data Platform (NDP) analytics, and wireless LAN
controllers (WLC) are typically locally in the data center and control the entire SDA architecture. Being
able to express intent in human language through DNA-C, then have the system map this intent to device
configuration automatically, is a major advantage SDA deployment.

At the time of this writing, the SDA solution is supported on most modern Cisco switch product lines. Some
of the common ones include the Catalyst 9000, Catalyst 3650/3850, and Nexus 7000 lines. DNA-C within
the SDA architecture is analogous to an SDN controller as it asserts the desired configuration/state onto the
managed devices within the SDA architecture. DNA-C is programmable through a northbound REST API
to allow business applications to communicate their intent to DNA-C, which uses its southbound interfaces
(SSH, SNMP, and/or HTTPS) to program network devices.

1.7.4 Software-Defined Data Center (SD-DC)

SD-DC as a generic term describes a data center design model whereby all DC resources are virtualized
and on-demand. That is to say, SD-DC brings cloud-like provisioning of all DC resources (compute, network,
and storage) to support specific applications in automated fashion. Security within application components
(e.g. front-end, application, and database containers) and between different applications (e.g. APIs) is in-
herent with any SD-DC solution. Resources are pooled and shared between resources for maximum cost
effectiveness, flexibility, and ability to respond to changing market demands.

One example of an SD-DC solution is Cisco’s Application Centric Infrastructure (ACI). As discussed earlier,
ACI separates policy from reachability and could be considered a hybrid SDN solution, much like Cisco’s
original SD-WAN solution, Intelligent WAN (IWAN). ACI is more revolutionary than IWAN as it reuses less
technology and relies on custom hardware and software. Specifically, ACI is supported on the Cisco Nexus
9000 product line using a version of software specific to ACI. This differs from the original NX-OS which
is considered a “standalone” or “non-ACI” deployment of the Nexus 9000. Unlike IWAN, ACI is positioned
within the data center as a software defined data center (SDDC) solution.

The creation of ACI, to include its complement of customized hardware, was driven by a number of factors
(not a comprehensive list):

Copyright 2021 Nicholas Russo http://njrusmc.net 38

http://njrusmc.net


1. Software alone cannot solve the migration of 1Gbps to 10Gbps in the server access layer or 10Gbps
to 40Gbps/100Gbps in the DC aggregation and core layers.

2. The overall design of the DC has to change to better support east/west (lateral flows within the DC)
traffic flows being generated by distributed, multi-tiered applications. Traditional DC designs focused
on north/south (into and out of the DC) traffic for user application access.

3. There is a need for rapid service deployment for internal IT consumers in a secure and scalable
way. This prevents individuals from going “elsewhere” (unauthorized third-parties, for example) when
enterprise IT providers cannot meet their needs.

4. Central management isn’t a new thing, but has traditionally failed as network devices did not have
machine-friendly interfaces since they were often configured directly by humans (SNMP is an excep-
tion). Such interfaces are called Application Programmability Interfaces (API) which are discussed
later in this document.

The controller used for ACI is known as the Application Policy Infrastructure Controller (APIC). Cisco’s
approach in developing this controller was different from the classic thought process of “the controller needs
to get a packet from point A to point B”. Networks have traditionally done this job well. Instead, APIC focuses
on when the packets can move and what happens when they do. That is to say, under what policy conditions
a packet should be forward, dropped, rerouted over an alternative link, etc. Packet forwarding continues
in the distributed control-plane model as discussed before, but the APIC is able to configure any node in
the network with specific policy, to include security policy, or to enhance/modify any given flow in the data
center. Policy is retained in the nodes even in the event of a controller failure, but policy can only be modified
by the APIC control point.

The ACI infrastructure is built on a leaf/spine network fabric which has a number of interesting characteris-
tics:

1. Adding bandwidth is achieved by adding spines and linking the leaves to it.

2. Adding access density is achieved by adding leaves and linking them to the spines.

3. “Border” leaves are identified as the egress point from the fabric, not the spines.

4. Nothing connects to the spines other than leaves (no services).

5. Spines are never connected laterally.

This architecture is not new (in general), but is becoming popular in DC fabrics for its superior distribution of
bandwidth for north/south and east/west DC flows. The significant advantage of this design for any SDN DC
solution is that it is universally useful; other SDN vendors in the DC space typically prefer that the underlying
architecture look this way. This topology need not change even as the APIC policies change significantly
since it is designed only for high-speed transport. In an ACI network, the network makes no attempt to
automatically classify, treat, and prioritize specific applications absent input from the user (via APIC). That
is to say, it is both cost prohibitive and error prone for the network to make such a classification when the
business drivers (i.e. human input) are what drives the prioritization, security policy, and other treatment
characteristics of a given application’s traffic.

Policy applied to the APIC is applied to the network using several constructs:

1. Application Network Profile: Logical template for how the application connects and works. All tiers
of a given application are encompassed by this profile. The profile can contain multiple policies which
are applied between the components of an application. These policies can define things like QoS,
availability, and security requirements. This “declarative” model is intuitive and is application-focused.
The policy also follows applications across the DC as they migrate for mobility purposes.

2. Endpoint Groups (EPG): EPGs are designed to group elements that share a common policy to-
gether. Consider a classic three-tier application. All web servers would be in one EPG, while the

Copyright 2021 Nicholas Russo http://njrusmc.net 39

http://njrusmc.net


application servers would be in a second. The database servers would be in a third. The policy ap-
plication would occur between these endpoint groups. Components are placed into groups based on
any number of fields, such as VLAN, IP address, port (physical or layer-4), and other fields.

3. Contracts: Contracts determine the types of traffic (and their treatment) between EPGs. The contract
is the application of policy between EPGs which effectively represents an agreement between two
entities to exchange information. Contracts are aptly named as it is not possible to violate a contract;
this is enforced by the APIC policies, which are driven by business requirements.

The diagram below depicts a high level image of the ACI infrastructure provided by Cisco.

Figure 14: Cisco ACI SD-DC High Level

1.8 Virtualization functions

Virtualization, speaking generally, has already been discussed in great detail thus far. This section focuses
primarily on network functions virtualization (NFV), virtual network functions (VNF), and the components
that tie everything together. The section includes some Cisco product demonstrations as well to provide
some real-life context around modern NFV solutions.

1.8.1 Network Functions Virtualization infrastructure (NFVi)

Before discussing NFV infrastructure, the concepts surrounding NFV must be fully understood. NFV takes
specific network functions, virtualizes them, and assembles them in a sequence to meet specific business
needs. NFV is generally synonymous with creating virtual instances of things which were once physical.
Many vendors offer virtual routers (Cisco CSR1000v, Cisco IOS-XR9000v, etc), security appliances (Cisco
ASAv, Cisco NGIPSv, etc), telephony and collaboration components (Cisco UCM, CUC, IMP, UCCX, etc)
and many other virtual products that were once physical appliances. Separating these products into virtual
functions allows a wide variety of organizations, from cloud providers to small enterprises, to realize several
advantages:

1. Can be run on any hardware, not vendor-specific platforms or solutions

Copyright 2021 Nicholas Russo http://njrusmc.net 40

http://njrusmc.net


2. Can be run on-premises or in the cloud (or both), which can reduce cost

3. Easy and fast scale up, down, in, or out to meet customer demand

Traditionally, value-added services required specialized hardware appliances, such as carrier-grade NAT
(CGN), encryption, broadband aggregation, deep packet inspection, and more. In addition to being large
capital investments, their installation and maintenance required truck rolls (i.e., a trip to the POP) by qual-
ified engineers. Note that some of these appliances, such as firewalls, could have been on the customer
premises but managed by the carrier. The NFV concept, and subsequent NFV infrastructure, can therefore
be extended all the way to the customer edge. In summary, NFV can provide elasticity for businesses to
decouple network functions from their hardware appliances. The European Telecommunications Standards
Institute (ETSI) has released a pair of documents that help describe the NFV architectural framework and
its use cases, challenges, and value propositions. These documents are linked in the references, and
the author discusses it briefly here. At a high level, hardware resources such as compute, storage, and
networking are encompassed in the infrastructure layer, which rests beneath the hypervisor and its asso-
ciated operating system (the “virtualization layer” in ETSI terms). ETSI also defines a level of hardware
abstraction in what is called the NFV Infrastructure (NFVI) layer where virtual compute, virtual storage, and
virtual networking can be exposed to VNFs. These VNFs are VMs or containers that sit at the apex of the
framework and perform some kind of network function, such as firewall, load balancer, WAN accelerator,
etc. The ETSI whitepaper is protected by copyright and the author has not yet received written permission
to use the graphic detailing this architecture. Readers are encouraged to reference page 10 of the ETSI
NFV Architectural document.

Note that the description of a VNF in the previous paragraph may suggest that a VNF must be a virtual ma-
chine. That is, a server with its own operating system, virtual hardware, and networking support. VNFs can
also be containers which, as discussed earlier in the document, inherit these properties from the base OS
running the container management software. The “use case” whitepaper (not protected by any copyrights)
is written by a diverse group of network operators and uses a more conversational tone. This document
discusses some of the advantages and challenges of NFV which are pertinent to understanding the value
proposition of NFV in general. Examples from that document are listed in the table that follows.

Advantage/Benefit Disadvantage/Challenge

Faster rollout of value added services Likely to observe decreased performance

Reduced CAPEX and OPEX Scalability exists only in purely NFV environment

Less reliance on vendor hardware refresh cycle Interoperability between different VNFs

Mutually beneficial to SDN (complementary) Mgmt and orchestration alongside legacy systems

Table 3: NFV Advantages and Disadvantages

NFV infrastructure (NFVi) encompasses all of the NFV related components, such as virtualized network
functions (VNF), management, orchestration, and the underlying hardware devices (compute, network, and
storage). That is, the totality of all components within an NFV system can be considered an NFVI instance.
Suppose a large service provider is interested in NFVI in order to reduce time to market for new services
while concurrently reducing operating costs. Each regional POP could be outfitted with a “mini data center”
consisting of NFIV components. Some call this an NFVI POP, which would house VNFs for customers within
the region it serves. It would typically be centrally managed by the service provider’s NOC, along with all of
the other NFVI POPs deployed within the network. The amalgamation of these NFVI POPs are parts of an
organization’s overall NFVI design.

1.8.2 Virtual Network Functions with NFVIS Demonstration

NFV exists to abstract the network functions from their underlying hardware. More generically, the word
“hardware” can be expanded to include all lower level connectivity within the Open System Interconnection

Copyright 2021 Nicholas Russo http://njrusmc.net 41

http://njrusmc.net


(OSI) model. This 7-layer model is a common thought process for vertically segmenting components in the
network stack, and is a model in which all network engineers are familiar. NFV provides abstraction at the
first four layers of the OSI model, starting from the bottom:

1. Physical layer (L1): The layer in which physical transmission of data is conducted. Media types such
as copper/fiber cabling and wireless radio communications are examples. More in the context of NFV
would be the underlying NFV abstracts this transport

2. Data Link (L2): The layer in which the consolidation of data into batches (frames, cells, etc) is defined
according to some specification for transmission across the physical network. Ethernet, frame-relay,
ATM, and PPP are examples. With NFV, this refers to the abstraction of the internal virtual switching
between VNFs in a given service chain. These individual virtual networks are automatically created
and configured by the underlying NFV management/orchestration system, and removed when no
longer needed.

3. Network (L3): This layer provides end-to-end delivery of data packets across many independent data
link layer technologies. Traditional IP routing through a service chain may not be easy to implement
or intuitive, so new technologies exist to solve this problem at layer-3. Service chaining technologies
are discussed in greater detail shortly

4. Transport (L4): This layer provides additional delivery features such as flow/congestion control, ex-
plicit acknowledges, and more. NFV helps abstract some of these technologies in that administrators
and developers no longer need to determine which layer-04 protocol to choose (TCP, UDP, etc) as
the construction of the VNF service chain will be done according to the operator’s intent. Put another
way, the VNF service chain seeks to optimize application performance while abstracting all of the
transport-like layers of the OSI model through the NFVI management and orchestration software.

Service chaining, especially in cloud/NFV environments, can be achieved in a variety of technical ways. For
example, one organization may require routing and firewall, while another may require routing and intrusion
prevention. The per-customer granularity is a powerful offering of service chaining in general. The main
takeaway is that all of these solutions are network virtualization solutions of sorts, even if their use cases
extend beyond service function chaining.

1. MPLS and Segment Routing: Some headend LSR needs to impose different MPLS labels for each
service in the chain that must be visited to provide a given service. MPLS is a natural choice here
given the label stacking capabilities and theoretically-unlimited label stack depth.

2. Networking Services Header (NSH): Similar to the MPLS option except is purpose-built for service
chaining. Being purpose-built, NSH can be extended or modified in the future to better support new
service chaining requirements, where doing so with MPLS shim header formats is less likely. MPLS
would need additional headers or other ways to carry “more” information.

3. Out of band centralized forwarding: Although it seems unmanageable, a centralized controller
could simply instruct the data-plane devices to forward certain traffic through the proper services
without any in-band encapsulation being added to the flow. This would result in an explosion of core
state which could limit scalability, similar to policy-based routing at each hop.

4. Cisco vPath: This is a Cisco innovation that is included with the Cisco Nexus 1000v series switch for
use as a distributed virtual switch (DVS) in virtualized server environments. Each service is known as
a virtual service node (VSN) and the administrator can select the sequence in which each node should
be transited in the forwarding path. Traffic transiting the Nexus 1000v switch is subject to redirection
using some kind of overlay/encapsulation technology. Specifically, MAC-in-MAC encapsulation is used
for layer-2 tunnels while MAC-in-UDP is used for layer-4 tunnels.

Cisco has at least two specific NFV infrastructure solutions, NFVI and NFVIS, which are described in detail
next. The former is a larger, collaborative effort with Red Hat known simply as NFV Infrastructure and
is targeted for service providers. The hardware complement includes Cisco UCS servers for compute and
Cisco Nexus switches for networking. Cisco’s Virtual Infrastructure Manager (VIM) is a fully automated cloud
lifecycle management system and is designed for private cloud. This is not to be confused with the world’s

Copyright 2021 Nicholas Russo http://njrusmc.net 42

http://njrusmc.net


best text editor. At a high level, VIM is a wrapper for Red Hat OpenStack and Docker containers behind the
scenes, since managing these technologies independently is technically challenging. In summary, VIM is
the NFVI software platform. The solution has many subcomponents. Two particularly interesting ones are
discussed below.

1. Cisco Virtual Topology System (VTS): A standards-based, open, overlay management and provi-
sioning system for data center networks. It automates DC overlay fabric provisioning for physical and
virtual workloads. This is an optional service that is available through Cisco VIM. In summary, VTS
provides policy-based (declarative) configuration to create secure, multi-tenant overlays. Its control
plane uses Cisco IOS-XRv software for BGP EVPN route-reflection and VXLAN for data plane encap-
sulation between the Nexus switches in the NFVI fabric. VTS is an optional enhancement to VIM and
NFVI.

2. Cisco Virtual Topology Forwarder (VTF): Included with VTS, VTF leverages Vector Packet Pro-
cessing (VPP) to provide high performance Layer 2 and Layer 3 VXLAN packet forwarding. VTF is
effectively a VXLAN-capable software switch. Being able to host VTEPs inside the server itself, rather
than on the top of rack (TOR) Nexus switch, simplifies the Nexus fabric configuration and manage-
ment. VTS and VTF together appear comparable, at least in concept, to VMware’s NSX solution.

Cisco also has a solution called NFV Infrastructure Software (NFVIS). This solution is a self-contained
KVM-based hypervisor (running on CentOS 7.3) which can be installed on a bare metal server to provide a
virtualized environment. It comes with specialized drivers for a variety of underlying physical components,
such as NICs. NFVIS can run on many third-party hardware platforms as well as Cisco’s Enterprise Network
Computing System (ENCS) solution. This platform was designed specifically for NFV-enabled branch sites
for customers desiring a complete Cisco solution.

1. Hardware platform: the hypervisor is installed on a hardware platform. There are a variety of sup-
ported hardware platforms. This gives customers freedom of choice. NFVIS provides hardware-
specific drivers for these platforms, and the official hardware compatibility list is included on the NFVIS
data sheet here.

2. Virtualization layer: Decouples underlying hardware and software on top, achieving hardware/software
independence.

3. Virtual Network Functions (VNFs): The virtual machines themselves that are managed through the
hypervisor. They deliver consistent, trusted network services across all platforms. NFVIS supports
many common image types, including ISO, OVA, QCOW, QCOW2, and RAW. Images can be certified
by Cisco after extensively testing and integration which is a desirable accomplishment for production
operations. The current list of certified third-party VNFs can be found here.

4. SDN applications: These applications can integrate with NFVIS to provide centralized orchestration
and management. This is effectively a northbound interface, providing hooks for business applications
to influence how NFVIS operates.

The author has personally run NFVIS on both ENCS and third party x86-based servers. In this way, NFVIS is
comparable to VIM within the aforementioned NFVI solution, except is lighter weight and only a standalone
operating system. NFVIS brings the following capabilities:

1. Local management options: NFVIS supports an intuitive web interface that does not require any
Cisco-specific clients to be installed on the management stations. The device has a lightweight CLI,
accessible both through SSH via out of band management and via serial console.

2. VNF repository: The NFVIS platform can store VNF images on its local disks for deployment. For
example, a branch site might require router, firewall, and WAN acceleration VNFs. Each of these
devices can come with a “day zero” configuration for rapid deployment. Cisco officially supports many
third-party VNFs (Palo Alto virtual firewalls are one notable example) within the NFVIS hypervisor.

3. Drag-and-drop networking: VNFs can be clicked and dragged from inventory onto a blank canvas
and connected, at a high level, with different virtual network. VNFs can be chained together in the

Copyright 2021 Nicholas Russo http://njrusmc.net 43

https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-functions-virtualization-nfv/datasheet-c78-738570.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-functions-virtualization-nfv/nfv-open-ecosystem-qualified-vnf-vendors.html
http://njrusmc.net


proper sequence. The network administrator does not have to manually create virtual switches, port-
groups, VLANs, or any other internal plumbing between the VNFs.

4. Performance reporting and lifecycle management: The dashboards of NFVIS are effective moni-
toring points for the NFVIS system as a whole. This allows administrators to quickly diagnose prob-
lems and spot anomalies in their environment.

NFVIS has many open source components. A few common ones are listed below:

1. Open vSwitch (OVS) An open-source virtual switching solution that has both a rich feature set and
can be easily automated. This is used for the internal networking of NFVIS as well as the user-facing
switch ports.

2. Quick Emulator (QEMU): Open source machine emulator which can run code written for one CPU
architecture on a different one. For example, running x86 code on an ARM CPU becomes possible.

3. Linux daemons: A collection of well-known Linux daemons, such as snmpd, syslogd, and collectd
run in the background to handle basic system management using common methods.

Because NFVIS is designed for branch sites, zero-touch provisioning is useful for the platform itself (not
counting VNFs). Cisco’s plug-n-play (PnP) network service is used for this. Similar to the way in which
wireless access points discover their wireless LAN controller (WLC), NFVIS can discover a DNA-C using
manually configured IP address, DHCP option 43, DNS lookup, or Cisco Cloud redirection, in that order.
The PnP agent on NFVIS reaches out to the PnP server on DNA-C to be added to the DNA-C managed
device inventory.

Cisco NFVIS dashboard provides a performance summary of how many virtual machines (typically VNFs to
be more specific) are running on the device. It also provides a quick status of resource allocation, and point-
and-click hyperlinks to perform routine management activities, such as adding a new VNF or troubleshooting
an existing one.

Figure 15: Cisco NFVIS Home Dashboard

The VNF repository can store VNF images for rapid deployment. Each image can also be instantiated many
times with different settings, know as profiles. For example, the system depicted in the screenshots below
has two images: Cisco ASAv firewall and the Viptela vEdge SD-WAN router.

Copyright 2021 Nicholas Russo http://njrusmc.net 44

http://njrusmc.net


Figure 16: Cisco NFVIS Image Repository

The Cisco ASAv, for example, has multiple performance tiers based on scale. The ASAv5 is better suited
to small branch sites with the larger files being able to process more concurrent flows, remote-access VPN
clients, and other processing/memory intensive activities. The NFVIS hypervisor can store many different
“flavors” of a single VNF to allow for rapidly upgrading a VNF’s performance capabilities as the organization’s
IT needs grow.

Figure 17: Cisco NFVIS Image Profiles

Once the images with their corresponding profiles have been created, each item can be dragged-and-
dropped onto a topology canvas to create a virtual network or service chain. Each LAN network icon is
effectively a virtual switch (a VLAN), connecting virtual NICs on different VNFs together to form the correct
flow path. On many other hypervisors, the administrator needs to manually build this connectivity as VMs
come and go, or possibly script it. With NFVIS, the intuitive GUI makes it easier for network operators to
adjust the switched topology of the intra-NFVIS network.

Note that the bottom of the screen has some ports identified as single root input/output virtualization (SR-
IOV). These are high-performance connection points for specific VNFs to bypass the hypervisor-managed
internal switching infrastructure and connect directly to Peripheral Component Interconnect express (PCIe)
resources. This improves performance and is especially useful for high bandwidth use cases.

Copyright 2021 Nicholas Russo http://njrusmc.net 45

http://njrusmc.net


Figure 18: Cisco NFVIS Topology Builder

Last, NFVIS provides local logging management for all events on the hypervisor. This is particularly useful
for remote sites where WAN outages separate the NFVIS from the headend logging servers. The on-box
logging and its ease of navigation can simplify troubleshooting during or after an outage.

Figure 19: Cisco NFVIS Log Reporting

Copyright 2021 Nicholas Russo http://njrusmc.net 46

http://njrusmc.net


1.9 Automation and orchestration tools

Automation and orchestration are two different things although are sometimes used interchangeably (and
incorrectly so). Automation refers to completing a single task, such as deploying a virtual machine, shut-
ting down an interface, or generating a report. Orchestration refers to assembling/coordinating a pro-
cess/workflow, which is effectively an ordered set of tasks glued together with conditions. For example,
deploy this virtual machine, and if it fails, shutdown this interface and generate a report. Automation is to
task as orchestration is to process/workflow.

Often times the task to automate is what an engineer would configure using some programming/scripting
language such as Java, C, Python, Perl, Ruby, etc. The variance in tasks can be very large since an
engineer could be presented with a totally different task every hour. Creating 500 VLANs on 500 switches
isnt difficult, but is monotonous, so writing a short script to complete this task is ideal. Adding this script
as an input for an orchestration engine could properly insert this task into a workflow. For example, run
the VLAN-creation script after the nightly backups but before 6:00 AM the following day. If it fails, the
orchestrator can revert all configurations so that the developer can troubleshoot any script errors.

With all the advances in network automation, it is important to understand the role of configuration man-
agement (CM) and how new technologies may change the logic. Depending on the industry, the term CM
may be synonymous with source code management (SCM) or version control (VC). Traditional networking
CM typically consisted of a configuration control board (CCB) along with an organization that maintained
device configurations. While the corporate governance gained by the CCB has value, the maintenance of
device configurations may not. Using the “infrastructure as code” concept, organizations can template/script
their device configurations and apply CM practices only to the scripts. One example is using Ansible with
the Jinja2 template language. Simply maintaining these scripts, along with their associated playbooks and
variable files, has many benefits:

1. Less to manage: A network with many nodes is likely to have many device configurations that are
almost identical. One such example would be restaurant/retail chains as it relates to WAN sites. By
creating a template for a common architecture, then maintaining site-specific variable files, updating
configurations becomes simpler.

2. Enforcement: Simply running the script will baseline the entire network based on the CCBs policy.
This can be done on a regular basis to wipe away and vestigial (or malicious/damaging) configurations
from devices quickly.

3. Easy to test: Running the scripts in a development environment, such as on some VMs in a private
data center or compute instances in public cloud, can simplify the testing of your code before applying
it to the production network.

1.9.1 Cloud Center

Cisco Cloud Center (formerly CliQr) is a software solution design for application deployment in multi-cloud
environments. Large organizations often use a variety of cloud providers for different purposes. For exam-
ple, a company may use Amazon AWS for code development and integration testing using the CodeCommit
and CodeBuild SaaS offerings, respectively. The same organization could be using Microsoft Azure for its
Active Directory (AD) services as Azure offers AD as a service. Last, the organization may use a private
cloud (e.g. OpenStack or VMware) to host sensitive applications which are Government-regulated and have
strict data protection requirements.

Managing each of these clouds independently, using their respective dashboards and APIs, can become
cumbersome. Cisco Cloud Center is designed to be another level of abstraction in an organization’s cloud
management strategy by providing a single point for applications to be deployed based on user policy. Us-
ing the example above, there are certain applications that are best operated on a specific cloud provider.
Other applications may not have strict requirements, but Cloud Center can deploy and migrate applications
between clouds based on user policy. For example, one application may require very high disk read/write
capabilities, and perhaps this is less expensive in Azure. Another application may require very high avail-

Copyright 2021 Nicholas Russo http://njrusmc.net 47

http://njrusmc.net


ability, and perhaps this is best achieved in AWS. Note that these are examples only and not indicative of
any cloud provider in particular.

Applications can be abstracted into individual components, usually virtual machines or containers, and
Cloud Center can deploy those applications where they best serve the organization’s needs. The adminis-
trator can “just say go” and Cloud Center interacts with the different cloud providers through their various
APIs, reducing development costs for large organizations that would need to develop their own. Cloud Cen-
ter also has southbound APIs to other Cisco Data Center products, such as UCS Director, to help manage
application deployment in private cloud environments.

1.9.2 Digital Network Architecture Center (DNA-C) Demonstration

DNA-C is Cisco’s enterprise management and control solution for the Digital Network Architecture (DNA).
DNA is Cisco’s intent-based networking solution which means that the desired state is configured within
DNA-C, and the system makes this desired state a reality in the network without the administrator needing
to know or care about the current state. The solution is like a “manager of managers” and can tie into
other Cisco management products, such as Identity Services Engine (ISE) and Viptela vManage, using
REST APIs. These integrations allow DNA-C to seamlessly support SDA and SD-WAN within an enterprise
LAN/WAN environment. DNA-C is broken down into three sequential workflow types:

1. Design: This is where the administrators define the “intent” for the network. For example, an admin-
istrator may define a geographical region everywhere the company operates, and add sites into each
region. There can be regionally-significant variables and design criteria which are supplemented by
site-specified design criteria. One example could be IP pools, whereby the entire region fits into a
large /14 and each individual site gets a /24, allowing up to 1024 sites per region and keeping the IP
numbering scheme predictable. There are many more options here; some are covered briefly in the
upcoming demonstration.

2. Policy: Generally relates to SDA security policies and gives granular control to the administrator.
Access and LAN security technologies are configured here, such as 802.1X, Trustsec using Scalable
Group Tags (SGT), virtual networking and segmentation, and traffic copying via encapsulated remote
switch port analyzer (ERSPAN). Some of these features require ISE integration, such as Trustsec, but
not all do. As such, DNA-C can provide improved security for the LAN environment even without ISE
present.

3. Provision: After the network has been designed with its appropriate policies attached, DNA-C can
provision these new sites. This workflow usually includes pushing VNF images and their correspond-
ing day 0 configurations onto hypervisors, such as NFVIS. This is detailed in the upcoming demon-
stration as describing it in the abstract is difficult.

The demonstration in this session ties in with the previous NFVIS demonstration which discussed the hy-
pervisor and its local management capabilities. Specifically, DNA-C provides improved orchestration over
the NFVIS nodes. DNA-C can provide day 0 configurations and setup for a variety of VNFs on NFVIS. It
can also provide the NFVIS hypervisor software itself, allowing for scaled software updates. Upon logging
into DNAC, the screenshot below is displayed. The three main workflows (design, policy, and provision) are
navigable hyperlinks, making it easy to get started. DNA-C version 1.2 is used in this demonstration.
Today, Cisco provides DNA-C as a physical UCS server.

Copyright 2021 Nicholas Russo http://njrusmc.net 48

http://njrusmc.net


Figure 20: DNA-C Home Dashboard

After clicking on the Design option, the main design screen displays a geographic map of the network in the
Network Hierarchy view. In this small network, the region of Aberdeen has two sites within it, Site200 and
Site300. Each of these sites has a Cisco ENCS 5412 platform running NFVIS 3.8.1-FC3; they represent
large branch sites. Additional sites can be added manually or imported from a comma-separated values
(CSV) file. Each of the other subsections is worth a brief discussion:

1. Network Settings: This is where the administrator defines basic network options such as IP address
pools, QoS settings, and integration with wireless technologies.

2. Image Repository: The inventory of all images, virtual and physical, that are used in the network.
Multiple flavors of an image can be stored, with one marked as the “golden image” that DNA-C will
ensure is running on the corresponding network devices.

3. Network Profiles: These network profiles bind the specific VNF instances to a network hierarchy,
serving as network-based intent instructions for DNA-C. A profile can be applied globally, regionally,
or to a site. In this demonstration, the “Routing & NFV” profile is used, but DNA-C also supports a
“Switching” profile and a “Wireless” profile, both of which simplify SDA operations.

4. Auth Template: These templates enable faster IEEE 802.1X configuration. The 3 main options include
closed authentication (strict mode), easy connect (low impact mode), and open authentication (anyone
can connect). Administrators can add their own port-based authentication profiles here for more
granularity. Since 802.1X is not used in this demonstration, this particular option is not discussed
further.

Figure 21: DNA-C Geographic View

Copyright 2021 Nicholas Russo http://njrusmc.net 49

http://njrusmc.net


The Network Settings tab warrants some additional discussion. In this tab, there are additional options to
further customize your network. Brief descriptions and provided below. Recall that these settings can be
configured at the global, regional, or site level.

1. Network: Basic network settings such as DHCP/DNS server addresses and domain name. It might
be sensible to define the domain name at the global level and DHCP/DNS servers at the regional or
site level, for example.

2. Device Credentials: Because DNA-C can directly manage network devices, it must know the cre-
dentials to access them. Options including SSH, SNMP, and HTTP protocols.

3. IP Address Pools: Discussed briefly earlier, this is where administrators defined the IP ranges used
at the global, regional, and site levels. DNA-C helps manage these IP pools to reduce that manual
burden from network operators.

4. SP Profiles: Many carriers use different QoS models. For example, some use a 3-class model (gold,
silver, bronze) while others use granular 8-class or 12-class models. By assigned specific SP profiles
to regions or sites, DNA-C helps keep QoS configuration consistent to improve the user experience.

5. Wireless: DNA-C can tie into Cisco Mobile eXperiences (CMX) family of products to manage large
wireless networks. It is particularly useful for those with extensive mobility/roaming. The administrator
can set up both enterprise and guest wireless LANs, RF profiles, and more. DNA-C also supports
integration with Meraki products without an additional license requirement.

Figure 22: DNA-C Network Setings

Additionally, the Network Profiles tab is particularly interesting for this demonstration as VNFs are being
provisioned on remote ENCS platforms running NFVIS. On a global, regional, or per site basis, the ad-
ministrator can identify which VNFs should run on which NFVIS-enabled sites. For example, sites in one
region may only have access to high-latency WAN transport, and thus could benefit from WAN optimization
VNFs. Such an expense may not be required in other regions where all transports are relatively low-latency.
The screenshot below shows an example. Note the similarities with the NFVIS drag-and-drop GUI; in this
solution, the administrator checks boxes on the left hand side of the screen to add or remove VNFs. The
virtual networking between VNFs is defined elsewhere in the profile and is not discussed in detail here.

Copyright 2021 Nicholas Russo http://njrusmc.net 50

http://njrusmc.net


Figure 23: DNA-C Network Profile for VNFs

After configuring all of the network settings, administrators can populate their Image Repository. This
contains a list of all virtual and physical images currently loaded onto DNA-C. There are two screenshots
below. The first shows the physical platform images, in this case, the NFVIS hypervisor. Appliance software,
such as a router IOS image, could also appear here. The second screenshot shows the virtual network
functions (VNFs) that are present in DNA-C. In this example, there is a Viptela vEdge SD-WAN router and
ASAv image.

Figure 24: DNA-C Images for Physical Devices

Figure 25: DNA-C Images for Virtual Devices

After completing all of the design steps (for brevity, several were not discussed in detail here), navigate
back to the main screen and explore the Policy section. The policy section is SDA-focused and provides

Copyright 2021 Nicholas Russo http://njrusmc.net 51

http://njrusmc.net


security enhancements through traffic filtering and network segmentation techniques. The dashboard pro-
vides a summary of the current policy configuration. In this example, SDA was not configured, since the
ENCS/NFVIS provisioning demonstration does not include a campus environment. The policy options are
summarized below:

1. Group-Based Access Control: This performs ACL style filtering based on the SGTs defined earlier.
This is the core element of Cisco’s Trustsec model, which is a technique for deployment stateless
traffic filters throughout the network without the operational burden that normally follows it. This option
requires Cisco ISE integration.

2. IP Based Access Control: When Cisco ISE is absent or the switches in the network do not support
Trustsec, DNA-C can still help manage traditional IP access list support on network devices. This can
improve security without needing cutting-edge Cisco hardware and software products.

3. Traffic Copy: This feature uses ERSPAN to capture network traffic and tunnel it inside GRE to a
collector. This can be useful for troubleshooting large networks and provide improved visibility to
network operators.

4. Virtual Networks: This feature provides logical separation between and users at layer-2 or layer-3.
This requires ISE integration and, upon authenticating to the network, ISE and DNA-C team up to
assign users to a particular virtual network. This logical separation is another method of increasing
security through segmentation. By default, all end users in a virtual network can communicate with
one another unless explicitly blocked by a blacklist policy.

Figure 26: DNA-C Policy Main Page

After applying any SDA-related security policies into the network, it’s time to provision the VNFs on the
remote ENCS platforms running NFVIS. The screenshot below targets site 200. For the initial day 0
configuration bootstrapping, the administrator must tell DNA-C what the publicly-accessible IP address of
the remote NFVIS is. This management IP could change as the ENCS is placed behind NAT devices or in
different SP-provided DHCP pools. In this example, bogus IPs are used as an illustration.

Note that the screenshot is on the second step of the provisioning process. The first step just confirms the
network profile created earlier, which identifies the VNFs to be deployed at a specific level in the network
hierarchy (global, regional, or site). The third step allows the user to specific access port configuration, such
as VLAN membership and interface descriptions. The summary tab gives the administrator a review of the
provisioning process before deployment.

Copyright 2021 Nicholas Russo http://njrusmc.net 52

http://njrusmc.net


Figure 27: DNA-C Site Topology Viewer

The screenshot that follows shows a log of the provisioning process. This gives the administrator confidence
that all the necessary steps were completed, and also provides a mechanism for troubleshooting any issues
that arise. Serial numbers and public IP addresses are masked for security.

Figure 28: DNA-C Site Event Logging

In summary, DNA-C is a powerful tool that unifies network design, SDA policy application, and VNF provi-
sioning across an enterprise environment.

1.9.3 Kubernetes Orchestration with minikube Demonstration

Kubernetes is an open-source container orchestration platform. It is commonly used to abstract resources
like compute, network, and storage away from the containerized applications that run on top. Kubernetes
is to VMware vCenter as Docker is to VMware virtual machines; Docker abstracts individual application

Copyright 2021 Nicholas Russo http://njrusmc.net 53

http://njrusmc.net


components and Kubernetes allows the application to scale, be made highly available, and be centrally
managed/monitored. Kubernetes is not a CI/CD system for deploying code, but managing the containers in
which the code has already been deployed.

Kubernetes introduces many new terms which are critical to understand its operation. The most important
terms, at least for the demonstration in this section, are discussed next.

A pod is the smallest building block of a Kubernetes deployment. Pods contain application containers
and are managed a single entity. It is common to place exactly one container in each pod, giving the
administrator granular control over each container. However, it is possible to place multiple containers in
a pod, and makes sense when multiple containers are needed to provide a single service. A pod cannot
be split, which implies that all containers within a pod “move together” between resources in a Kubernetes
cluster. Like Docker containers, pods get one IP address and can have volumes for data storage. Scaling
pods is of particular interest, and using replica sets is a common way to do this. This creates more copies
of a pod within a deployment.

A deployment is an overarching term to define the entire application in its totality. This typically includes
multiple pods communicating between one another to make the application functional. Newly created de-
ployments are placed into servers in the cluster to be executed. High availability is built into Kubernetes
as any failure of the server running the application would prompt Kubernetes to move the application else-
where. A deployment can define a desired state of an application and all of its components (pods, replica
sets, etc.)

A node is a worker machine in Kubernetes, which can be physical or virtual. Where the pods are com-
ponents of a deployment/application, nodes are components of a cluster. Although an administrator can
just “create” nodes in Kubernetes, this creation is just a representation of a node. The usability/health of
a node depends on whether the Kubernetes master can communicate with the node. Because nodes can
be virtual platforms and hostnames can be DNS-resolvable, the definition of these nodes can be portable
between physical infrastructures.

A cluster is a collection of nodes that are capable of running pods, deployments, replica sets, etc. The
Kubernetes master is a special type of node which facilitates communications within the cluster. It is re-
sponsible for scheduling pods onto nodes and responding to events within the cluster. A node-down event,
for example, would require the master to reschedule pods running on that node elsewhere.

A service is concept used to group pods of similar functionality together. For example, many database
containers contain content for a web application. The database group could be scaled up or down (i.e.
they change often), and the application servers must target the correct database containers to read/write
data. The service often has a label, such as “database”, which would also exist on pods. Whenever the
web application communicates to the service over TCP/IP, the service communicates to any pod with the
“database” tag. Services could include node-specific ports, which is a simple port forwarding mechanism
to access pods on a node. Advanced load balancing services are also available but are not discussed in
detail in this book.

Labels are an important Kubernetes concept and warrant further discussion. Almost any resource in Ku-
bernetes can carry a collection of labels, which is a key/value pair. For example, consider the blue/green
deployment model for an organization. This architecture has two identical production-capable software
instances (blue and green), and one is in production while the other is upgraded/changed. Using JSON
syntax, one set of pods (or perhaps an entire deployment) might be labeled as {"color": "blue"} while
the other is {"color": "green"}. The key of “color” is the same so the administrator can query for “color”
label to get the value, and then make a decision based on that. One Cisco engineer described labels as
flexible and extensible source of metadata. They can reference releases of code, locations, or any sort of
logical groupings. There is no limitation of how many labels can be applied. In this way, labels are similar
to tags in Ansible which can be used to pick-and-choose certain tasks to execute or skip, depending.

The minikube solution provides a relatively easy way to get started with Kubernetes. It is a VM that can run
on Linux, Windows, or Mac OS using a variety of underlying hypervisors. It represents a tiny Kubernetes

Copyright 2021 Nicholas Russo http://njrusmc.net 54

http://njrusmc.net


cluster for learning the basics. The command line utility used to interact with Kubernetes is known as
kubectl and is installed independently of minikube.

The installation of kubectl and minikube on Mac OS is well-documented. The author recommends using
VirtualBox, not xhyve or VMware Fusion. Despite being technically supported, the author was not able
to get the latter options working. After installation, ensure both binaries exist and are in the shell PATH
environment variable.

Nicholass-MBP:localkube nicholasrusso# which minikube kubectl

/usr/local/bin/minikube

/usr/local/bin/kubectl

Starting minikube is as easy as the command below. Check the status of the Kubernetes cluster to ensure
there are no errors. Note that a local IP address is allocated to minikube to support outside-in access to
pods and the cluster dashboard.

Nicholass-MBP:localkube nicholasrusso# minikube start

Starting local Kubernetes v1.10.0 cluster...

Starting VM...

Getting VM IP address...

Moving files into cluster...

Setting up certs...

Connecting to cluster...

Setting up kubeconfig...

Starting cluster components...

Kubectl is now configured to use the cluster.

Loading cached images from config file.

Nicholass-MBP:localkube nicholasrusso# minikube status

minikube: Running

cluster: Running

kubectl: Correctly Configured: pointing to minikube-vm at 192.168.99.100

Next, check on the cluster to ensure it resolves to the minikube IP address.

Nicholass-MBP:localkube nicholasrusso# kubectl cluster-info

Kubernetes master is running at https://192.168.99.100:8443

KubeDNS is running at https://192.168.99.100:8443/api/v1/

namespaces/kube-system/services/kube-dns:dns/proxy

We are ready to start deploying applications. The hello-minikube application is the equivalent of “hello
world” and is a good way to get started. Using the command below, the Docker container with this applica-
tion is downloaded from Google’s container repository and is accessible on TCP port 8080. The name of
the deployment is hello-minikube and, at this point, contains one pod.

Nicholass-MBP:localkube nicholasrusso# kubectl run hello-minikube \

> --image=gcr.io/google_containers/echoserver:1.4 --port=8080

deployment.apps "hello-minikube" created

As discussed earlier, there is a variety of port exposing techniques. The “NodePort” option allows outside
access into the deployment using TCP port 8080 which was defined when the deployment was created.

Nicholass-MBP:localkube nicholasrusso# kubectl expose deployment \

> hello-minikube --type=NodePort

service "hello-minikube" exposed

Check the pod status quickly to see that the pod is still in a state of creating the container. A few seconds
later, the pod is operational.

Nicholass-MBP:localkube nicholasrusso# kubectl get pod

NAME READY STATUS RESTARTS AGE

hello-minikube-c8b6b4fdc-nz5nc 0/1 ContainerCreating 0 17s

Copyright 2021 Nicholas Russo http://njrusmc.net 55

http://njrusmc.net


Nicholass-MBP:localkube nicholasrusso# kubectl get pod

NAME READY STATUS RESTARTS AGE

hello-minikube-c8b6b4fdc-nz5nc 1/1 Running 0 51s

Viewing the network services, Kubernetes reports which resources are reachable using which IP/port com-
binations. Actually reaching these IP addresses may be impossible depending on how the VM is set up on
your local machine, and considering minikube is not meant for production, it isn’t a big deal.

Nicholass-MBP:localkube nicholasrusso# kubectl get service

NAME TYPE CLUSTER-IP XTERNAL-IP PORT(S) AGE

hello-minikube NodePort 10.98.210.206 <none> 8080:31980/TCP 15s

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 7h

Next, we will scale the application by increasing the replica sets (rs) from 1 to 2. Replica sets, as discussed
earlier, are copies of pods typically used to add capacity to an application in an automated and easy way.
Kubernetes has built-in support for load balancing to replica sets as well.

Nicholass-MBP:localkube nicholasrusso# kubectl get rs

NAME DESIRED CURRENT READY AGE

hello-minikube-c8b6b4fdc 1 1 1 1m

The command below creates a replica of the original pod, resulting in two total pods.

Nicholass-MBP:localkube nicholasrusso# kubectl scale \

> deployments/hello-minikube --replicas=2

deployment.extensions "hello-minikube" scaled

Get the pod information to see the new replica up and running. Theoretically, the capacity of this application
has been doubled and can now handle twice the workload (again, assuming load balancing has been set
up and the application operates in such a way where this is useful).

Nicholass-MBP:localkube nicholasrusso# kubectl get pod

NAME READY STATUS RESTARTS AGE

hello-minikube-c8b6b4fdc-l5jgn 1/1 Running 0 6s

hello-minikube-c8b6b4fdc-nz5nc 1/1 Running 0 1m

The minikube cluster comes with a GUI interface accessible via HTTP. The Kubernetes web dashboard
can be quickly verified from the shell. First, you can see the URL using the command below, then feed the
output from this command into curl to issue an HTTP GET request.

Nicholass-MBP:localkube nicholasrusso# minikube service hello-minikube --url

http://192.168.99.100:31980

Nicholass-MBP:localkube nicholasrusso# curl \

> $(minikube service hello-minikube --url)/health

CLIENT VALUES:

client_address=172.17.0.1

command=GET

real path=/health

query=nil

request_version=1.1

request_uri=http://192.168.99.100:8080/health

SERVER VALUES:

server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:

accept=*/*

host=192.168.99.100:31980

user-agent=curl/7.43.0

BODY:

-no body in request-

Copyright 2021 Nicholas Russo http://njrusmc.net 56

http://njrusmc.net


The command below opens up a web browser to the Kubernetes dashboard.

Nicholass-MBP:localkube nicholasrusso# minikube dashboard

Opening kubernetes dashboard in default browser...

The screenshot below shows the overview dashboard of Kubernetes, focusing on the number of pods that
are deployed. At present, there is 1 deployment called hello-minikube which has 2 total pods.

Figure 29: Kubernetes Main Dashboard

We can scale the application further from the GUI by increasing the replicas from 2 to 3. On the far right
of the deployments window, click the three vertical dots, then scale. Enter the number of replicas desired.
The screenshot below shows the prompt window. The screen reminds the user that there are currently 2
pods, but we desire 3 now.

Figure 30: Kubernetes Application Scaling

After scaling this application, the dashboard changes to show new pods being added in the diagram that
follows. After a few seconds, the dashboard reflects 3 healthy pods (not shown for brevity). During this
state, the third replica set is still being initialized and is not available for workload processing yet.

Copyright 2021 Nicholas Russo http://njrusmc.net 57

http://njrusmc.net


Figure 31: Kubernetes Application Scaling

Figure 32: Kubernetes Workload Status

Scrolling down further in the dashboard, the individual pods and replica sets are listed. This is similar to the
output displayed earlier from the kubectl get pods command.

Figure 33: Kubernetes Pods Summary

Checking the CLI again, the new replica set (ending in cxxlg) created from the dashboard appears here.

Nicholass-MBP:localkube nicholasrusso# kubectl get pods

NAME READY STATUS RESTARTS AGE

hello-minikube-c8b6b4fdc-cxxlg 1/1 Running 0 21s

hello-minikube-c8b6b4fdc-l5jgn 1/1 Running 0 8m

Copyright 2021 Nicholas Russo http://njrusmc.net 58

http://njrusmc.net


hello-minikube-c8b6b4fdc-nz5nc 1/1 Running 0 10m

To delete the deployment when testing is complete, use the command below. The entire deployment (ap-
plication) and all associated pods are removed.

Nicholass-MBP:localkube nicholasrusso# kubectl delete deployment hello-minikube

deployment.extensions "hello-minikube" deleted

Nicholass-MBP:localkube nicholasrusso# kubectl get pods

No resources found.

Kubernetes can also run as-a-service in many public cloud providers. For example, Google Kubernetes
Engine (GKE), AWS Elastic Container Service for Kubernetes (EKS), and Microsoft Azure Kubernetes Ser-
vice (AKS). The author has done a brief investigation into EKS in particular, but all of these SaaS services
are similar in their core concept. The main driver for Kubernetes as-a-service was to avoid building clusters
manually using IaaS building blocks, such as AWS EC2, S3, VPC, etc. Achieving high availability is difficult
due to coordination between multiple masters in a common cluster. With the SaaS offerings, the cloud
providers offer a fully managed service with which users interface directly. Specifically for EKS, the host-
name provided to a customer would look something like mycluster.eks.amazonaws.com. Administrators
can SSH to this hostname and issue kubectl commands as usual, along with all dashboard functionality
one would expect.

1.9.4 Amazon Web Services (AWS) CLI Demonstration

The AWS command line interface (CLI) is a simple way to interact with AWS programmatically. Like most
APIs, consumers can both read and write data, which simplifies interaction. Initially setting up the AWS CLI
is relatively simple and many tutorials exist, so this book covers the main points using some AWS console
screenshots.

First, create a user and group with permissions to, at a minimum, create and delete EC2 instances. For
demonstration purposes, the “terraform” user is placed in the “terraform” group which has full EC2 access
(create, delete, change power state, etc.) Note that the word “terraform” is used because this section serves
as a primer for the Terraform demo in the following section. Take note of the user Amazon Resource Name
(ARN) as this can be used for verifying AWS CLI connectivity.

Figure 34: AWS User/Group Assignments for Terraform

Copyright 2021 Nicholas Russo http://njrusmc.net 59

http://njrusmc.net


Figure 35: AWS EC2 Permissions for Terraform

Next, generate specific programmatic credentials for the “terraform” user. The access key is used by AWS
to communicate the username and other unique data about your AWS account, and the secret key is a
password that should not be shared.

Once the new “terraform” user exists in the proper group with the proper permissions and a valid access
key, run aws configure from the shell. The aws binary can be installed via Python pip, but if you are like
the author and are using an EC2 instance to run the AWS CLI, it comes pre-installed on Amazon Linux.
Simply answer the questions as they appear, and always copy/paste the access and secret keys to avoid
typos. Choose a region near you and use “json” for the output format, which is the most programmatically
appropriate answer.

[ec2-user@devbox ~]# aws configure

AWS Access Key ID [None]: AKIAJKRONVDHHQ3GJYGA

AWS Secret Access Key [None]: [hidden]

Default region name [None]: us-east-1

Default output format [None]: json

To quickly test whether AWS CLI is set up correctly, use the command below. Be sure to match up the Arn

number and username to what is shown in the screenshots above.

[ec2-user@devbox ~]# aws sts get-caller-identity

{

"Account": "043535020805",

"UserId": "AIDAINLWE2QY3Q3U6EVF4",

"Arn": "arn:aws:iam::043535020805:user/terraform"

}

The goal of this short demonstration is to deploy a Cisco CSR1000v into the default VPC within the avail-
ability zone us-east-1a. Building out a whole new virtual environment using the AWS CLI manually is not

Copyright 2021 Nicholas Russo http://njrusmc.net 60

http://njrusmc.net


terribly difficult but would be time consuming (and likely boring) for readers. Many of the AWS CLI “get-
ter” commands are prefixed with the word describe. To get information about VPCs, use describe-vpcs

shown below. The current environment has two VPCs: the default VPC and a custom Ansible VPC used for
Ansible development. The VPC without a name is the default. Record the VpcId of the default VPC which
is vpc-889b03ee.

[ec2-user@devbox ~]# aws ec2 describe-vpcs

{

"Vpcs": [

{

"VpcId": "vpc-7d5a7b1b",

"InstanceTenancy": "default",

"Tags": [

{

"Value": "VPC_Ansible",

"Key": "Name"

}

],

"CidrBlockAssociationSet": [

{

"AssociationId": "vpc-cidr-assoc-7d5c0815",

"CidrBlock": "10.125.0.0/16",

"CidrBlockState": {

"State": "associated"

}

}

],

"State": "available",

"DhcpOptionsId": "dopt-4d2cb42a",

"CidrBlock": "10.125.0.0/16",

"IsDefault": false

},

{

"VpcId": "vpc-889b03ee",

"InstanceTenancy": "default",

"CidrBlockAssociationSet": [

{

"AssociationId": "vpc-cidr-assoc-c66fe2ae",

"CidrBlock": "172.31.0.0/16",

"CidrBlockState": {

"State": "associated"

}

}

],

"State": "available",

"DhcpOptionsId": "dopt-4d2cb42a",

"CidrBlock": "172.31.0.0/16",

"IsDefault": true

}

]

}

Armed with the VPC ID from above, ask for the subnets available in this VPC. By default, every AZ within
this region has a default subnet, but since this demonstration is focused on us-east-1a, we can apply some
filters. First, we filter subnets only contained in the default VPC, then additionally only on the us-east-1a AZ
subnets. One subnet is returned with SubnetId of subnet-f1dfa694.

[ec2-user@devbox ~]# aws ec2 describe-subnets --filters \

> 'Name=vpc-id,Values=vpc-889b03ee' 'Name=availability-zone,Values=us-east-1a'

Copyright 2021 Nicholas Russo http://njrusmc.net 61

http://njrusmc.net


{

"Subnets": [

{

"AvailabilityZone": "us-east-1a",

"AvailableIpAddressCount": 4091,

"DefaultForAz": true,

"Ipv6CidrBlockAssociationSet": [],

"VpcId": "vpc-889b03ee",

"State": "available",

"MapPublicIpOnLaunch": true,

"SubnetId": "subnet-f1dfa694",

"CidrBlock": "172.31.64.0/20",

"AssignIpv6AddressOnCreation": false

}

]

}

Armed with the proper subnet for the CSR1000v, an Amazon Machine Image (AMI) must be identified
to deploy. Since there are many flavors of CSR1000v available, such as bring your own license (BYOL),
maximum performance, and security, apply a filter to target the specific image desired. The example below
shows a name-based filter searching for a string containing 16.09 as the version followed later by BYOL, the
lowest cost option. Record the ImageId, which is ami-0d1e6af4c329efd82, as this is the image to deploy.
Note: Cisco images require the user to accept the terms of a license agreement before usage. One must
navigate to the following page first, subscribe, and accept the terms prior to attempting to start this instance
or launch will result in an error. Visit this link for details.

[ec2-user@devbox ~]# aws ec2 describe-images --filters \

> 'Name=name,Values=cisco-CSR-.16.09*BYOL*'

{

"Images": [

{

"ProductCodes": [

{

"ProductCodeId": "5tiyrfb5tasxk9gmnab39b843",

"ProductCodeType": "marketplace"

}

],

"Description": "cisco-CSR-trhardy-20180727122305.16.09.01-BYOL-HVM",

"VirtualizationType": "hvm",

"Hypervisor": "xen",

"ImageOwnerAlias": "aws-marketplace",

"EnaSupport": true,

"SriovNetSupport": "simple",

"ImageId": "ami-0d1e6af4c329efd82",

"State": "available",

"BlockDeviceMappings": [

{

"DeviceName": "/dev/xvda",

"Ebs": {

"Encrypted": false,

"DeleteOnTermination": true,

"VolumeType": "standard",

"VolumeSize": 8,

"SnapshotId": "snap-010a7ddb206eb016e"

}

}

],

"Architecture": "x86_64",

Copyright 2021 Nicholas Russo http://njrusmc.net 62

https://aws.amazon.com/marketplace/pp/B00NF48FI2
http://njrusmc.net


"ImageLocation": "aws-marketplace/cisco-CSR-.16.09.01-BYOL-HVM-[snip]",

"RootDeviceType": "ebs",

"OwnerId": "679593333241",

"RootDeviceName": "/dev/xvda",

"CreationDate": "2018-09-19T00:59:25.000Z",

"Public": true,

"ImageType": "machine",

"Name": "cisco-CSR-.16.09.01-BYOL-[snip]"

}

]

}

Two other minor pieces of information are needed. First, capture the available key chains and choose the
most appropriate one for this instance. One key pair is available. The name “EC2-key-pair” will be used
when deploying the CSR1000v.

[ec2-user@devbox ~]# aws ec2 describe-key-pairs

{

"KeyPairs": [

{

"KeyName": "EC2-key-pair",

"KeyFingerprint": "fc:41:d4:[snip]"

}

]

}

Next, capture the available security groups and choose one. Be sure to filter on the default VPC to avoid
cluttering output with any Ansible VPC related security groups. The default security group, in this case, is
wide open and permits all traffic. The GroupId of sg-4d3a5c31 can be used when deploying the CSR1000v.

[ec2-user@devbox ~]# aws ec2 describe-security-groups --filter \

> 'Name=vpc-id,Values=vpc-889b03ee'

{

"SecurityGroups": [

{

"IpPermissionsEgress": [

{

"IpProtocol": "-1",

"PrefixListIds": [],

"IpRanges": [

{

"CidrIp": "0.0.0.0/0"

}

],

"UserIdGroupPairs": [],

"Ipv6Ranges": []

}

],

"Description": "default VPC security group",

"IpPermissions": [

{

"IpProtocol": "-1",

"PrefixListIds": [],

"IpRanges": [

{

"CidrIp": "0.0.0.0/0"

}

],

"UserIdGroupPairs": [],

Copyright 2021 Nicholas Russo http://njrusmc.net 63

http://njrusmc.net


"Ipv6Ranges": []

}

],

"GroupName": "default",

"VpcId": "vpc-889b03ee",

"OwnerId": "043535020805",

"GroupId": "sg-4d3a5c31"

}

]

}

With all the key information collected, use the command below with the appropriate inputs to create the new
EC2 instance. After running the command, a string is returned with the instance ID of the new instance;
this is why the --query argument is handy when deploying new instances using AWS CLI. The CSR1000v
will take a few minutes to fully power up.

[ec2-user@devbox ~]# aws ec2 run-instances --image-id ami-0d1e6af4c329efd82 \

> --subnet-id subnet-f1dfa694 \

> --security-group-ids sg-4d3a5c31 \

> --count 1 \

> --instance-type t2.medium \

> --key-name EC2-key-pair \

> --query "Instances[0].InstanceId"

"i-08808ba7abf0d2242"

In the meantime, collect information about the instance using the command below. Use the --instance-ids

option to supply a list of strings, each containing a specific instance ID. The value returned above is pasted
below. The status is still “initializing”.

[ec2-user@devbox ~]# aws ec2 describe-instance-status --instance-ids 'i-08808ba7abf0d2242'

{

"InstanceStatuses": [

{

"InstanceId": "i-08808ba7abf0d2242",

"InstanceState": {

"Code": 16,

"Name": "running"

},

"AvailabilityZone": "us-east-1a",

"SystemStatus": {

"Status": "ok",

"Details": [

{

"Status": "passed",

"Name": "reachability"

}

]

},

"InstanceStatus": {

"Status": "initializing",

"Details": [

{

"Status": "initializing",

"Name": "reachability"

}

]

}

}

]

Copyright 2021 Nicholas Russo http://njrusmc.net 64

http://njrusmc.net


}

You can continue running the above command every few minutes until the status changes to ok. Some
extra information has been removed from the output.

[ec2-user@devbox ~]# aws ec2 describe-instance-status \

> --instance-ids 'i-08808ba7abf0d2242'

{

"InstanceStatus": {

"Status": "ok",

"Details": [

{

"Status": "passed",

"Name": "reachability"

}

]

}

}

In order to connect to the instance to configure it, the public IP or public DNS hostname is required. The
command below targets this specific information without a massive JSON dump. Simply feed in the instance
ID. Without the complex query, one could manually scan the JSON to find the address, but this solution is
more targeted and elegant.

[ec2-user@devbox ~]# aws ec2 describe-instances \

> --instance-ids i-08808ba7abf0d2242 --output text \

> --query 'Reservations[*].Instances[*].PublicIpAddress'

34.201.13.127

Assuming your private key is already present with the proper permissions (read-only for owner), SSH into
the instance using the newly-discovered public IP address. A quick check of the IOS XE version suggests
that the deployment succeeded.

[ec2-user@devbox ~]# ls -l privkey.pem

-r-------- 1 ec2-user ec2-user 1670 Jan 1 16:54 privkey.pem

[ec2-user@devbox ~]# ssh -i privkey.pem ec2-user@34.201.13.127

ip-172-31-66-99#show version | include IOS XE

Cisco IOS XE Software, Version 16.09.01

Termination is simple as well. The only challenge is that, generally, one would have to rediscover the
instance ID assuming the termination happened long after the instance was created. The alternative is
manually writing some kind of shell script to store that data in a file, which must be manually read back in to
delete the instance. The next section on Terraform helps overcome these state problems in a simple way,
but for now, simply delete the CSR1000v using the command below. The JSON output confirms that the
instance is shutting down.

[ec2-user@devbox ~]# aws ec2 terminate-instances --instance-ids i-08808ba7abf0d2242

{

"TerminatingInstances": [

{

"InstanceId": "i-08808ba7abf0d2242",

"CurrentState": {

"Code": 32,

"Name": "shutting-down"

},

"PreviousState": {

"Code": 16,

"Name": "running"

Copyright 2021 Nicholas Russo http://njrusmc.net 65

http://njrusmc.net


}

}

]

}

This CurrentState of shutting-down will remain for a few minutes until the instance is gone. Running the
command again confirms the instance no longer exists as the state is terminated.

[ec2-user@devbox ~]# aws ec2 terminate-instances --instance-ids i-08808ba7abf0d2242

{

"TerminatingInstances": [

{

"InstanceId": "i-08808ba7abf0d2242",

"CurrentState": {

"Code": 48,

"Name": "terminated"

},

"PreviousState": {

"Code": 48,

"Name": "terminated"

}

}

]

}

1.9.5 Infrastructure as Code using Terraform

Terraform, like Ansible (discussed later in this book), is relatively easy to get started using. Understand-
ing Terraform’s value is best understood by contrasting it with the AWS CLI demonstrated in the previous
section. While the AWS CLI provides a simple and powerful method to interact with AWS, it has several
drawbacks. Think of a traditional shell script that simply runs commands and has basic logical constructs
like conditionals, loops, and variables. Suppose one wants to make the script state-aware so that it only
takes the necessary actions. For example, it doesn’t create EC2 instances that already exist and doesn’t
try to delete non-existent instances. To accomplish this, the programmer would have to constantly test for
the presence or absence of certain characteristics (the presence of an instance, the presence of a line of
a text in a file, etc.) before taking action. This makes the script complex and quickly gets out of control for
any non-trivial problem.

Terraform solves this problem through abstraction using a domain-specific language (DSL), like Ansible.
This simplified pseudo-code allows programmers to declare their intent/endstate and Terraform implements
the plan. Like many automation tools, it is often used as “infrastructure as code” whereby the desired
system is described in its entirety, checked into version control, and centrally enforced. Terraform has a
collection of providers, which are specific libraries used to interact with a variety of platforms. For example,
the forthcoming demonstration will use several AWS-specific providers. Because Terraform is an abstraction
layer, it does not reinvent the AWS CLI, but rather relies on it behind the scenes.

Terraform’s DSL is a completely new format, known as Hashicorp Configuration Language (HCL). The
language resembles a simplified JSON format with the addition of single and multi line comments. It is
designed to be both human and machine friendly.

In this demonstration, Terraform will provision a new virtual networking environment within AWS known as
a virtual private cloud (VPC) that has a large IP supernet from which all subnets must be contained. A new
subnet will be created which represents a DMZ for public facing enterprise services offered by a fictitious
company. A Cisco ASAv serves as the Internet edge firewall. Within the DMZ, a Cisco CSR1000v serves
as a VPN concentrator for site-to-site VPNs. These devices won’t be configured at a CLI-level by Terraform,
but will be provisioned and properly connected using AWS networking constructs. Subsequent configura-
tion management using Ansible, Nornir, or homemade scripts would generally occur after provisioning by

Copyright 2021 Nicholas Russo http://njrusmc.net 66

http://njrusmc.net


Terraform.

Armed with basic knowledge about Terraform and the task at hand, the demonstration will provision several
AWS resources:

1. Build a new VPC (region us-east-1) for our DMZ devices using the aws_vpc resource

2. Build a new DMZ subnet using the aws_subnet resource in the us-east-1a availability zone

3. Deploy an unlicensed Cisco CSR1000v using the aws_instance resource

4. Deploy an unlicensed Cisco ASAv using the aws_instance resource

Note that the preparatory work described in the AWS CLI section must be completed before continuing.
The author strongly recommends completing that demonstration first before jumping into Terraform. This
ensures that Terraform can use the AWS CLI credentials to access AWS programmatically.

Installing Terraform requires downloading the proper package for your operating system from here. For this
demonstration, the Linux 64-bit package is downloaded via wget below.

[ec2-user@devbox ~]# wget \

> https://releases.hashicorp.com/terraform/0.11.11/terraform_0.11.11_linux_amd64.zip

[snip, downloading file]

2019-01-01 15:26:18 (53.2 MB/s) - ‘terraform_0.11.11_linux_amd64.zip’ saved

[ec2-user@devbox ~]# ls -l

-rw-rw-r-- 1 ec2-user ec2-user 20971661 Dec 14 21:21 terraform_0.11.11_linux_amd64.zip

Unzip the package to reveal a single binary. At this point, Terraform operators have 3 options:

1. Move the binary to a directory in your PATH. This is the author’s preferred choice and what is done
below.

2. Add the current directory (where the terraform binary exists) to the shell PATH.

3. Prefix the binary with ./ every time you want to use it.

[ec2-user@devbox ~]# unzip terraform_0.11.11_linux_amd64.zip

Archive: terraform_0.11.11_linux_amd64.zip

inflating: terraform

[ec2-user@devbox ~]# file terraform

terraform: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped

[ec2-user@devbox ~]# echo $PATH

/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/ec2-user/.local/bin:/home/ec2-user/bin

[ec2-user@devbox ~]# sudo mv terraform /usr/local/bin/

Test to ensure your shell recognizes terraform as a command before continuing.

[ec2-user@devbox ~]# which terraform

/usr/local/bin/terraform

[ec2-user@devbox ~]# terraform --version

Terraform v0.11.11

Last, the author recommends creating a directory for this particular Terraform project as shown below.
Change into that directly and create a new text file called “network.tf”. Open the file in your favorite editor
to begin creating the Terraform plan.

[ec2-user@devbox ~]# mkdir tf-demo && cd tf-demo

[ec2-user@devbox tf-demo]#

Copyright 2021 Nicholas Russo http://njrusmc.net 67

http://njrusmc.net


First, invoke the AWS provider using the code below. While this is technically not needed, specifying the
region in the Terraform plan means that Terraform will not interactively prompt to hand-type a region every
time. Note that the access and secret keys are not needed because AWS CLI has already been configured.

# This avoids interaction prompting. The rest of the AWS CLI

# parameters (access and secret keys) should already be defined.

provider "aws" {

region = "us-east-1"

}

Next, use the aws_vpc resource to create a new VPC. The documentation suggests that only the cidr_block

argument is required. The author suggests adding a Name tag to help organize resources as well. Note that
there is a large list of “attribute” fields on the documentation page. These are the pieces of data returned
by Terraform, such as the VPD ID and Amazon Resource Name (ARN). These are dynamically allocated at
runtime and referencing these values can simply the Terraform plan later.

# Create a new VPC for DMZ services

resource "aws_vpc" "tfvpc" {

cidr_block = "203.0.113.0/24"

tags = {

Name = "tfvpc"

}

}

Next, use the aws_subnet resource to create a new IP subnet. The documentation indicates that cidr_block
and vpc_id arguments are needed. The former is self-explanatory as it represents a subnet within the VPC
network of 203.0.113.0/24; this demonstration uses 203.0.113.64/26. The VPC ID is returned from the
aws_vpc resource and can be referenced using the ${} syntax shown below. The name tfvpc has an
attribute called id that identifies the VPC in which this new subnet should be created. Like the aws_vpc

resource, aws_subnet also returns an ID which can be referenced later when creating EC2 instances.

# Create subnet within the new VPC for the DMZ

resource "aws_subnet" "dmz" {

vpc_id = "${aws_vpc.tfvpc.id}"

cidr_block = "203.0.113.64/26"

availability_zone = "us-east-1a"

tags = {

Name = "dmz"

}

}

Now that the basic network constructs have been configured, its time to add EC2 instances to construct the
DMZ. One could just add a few more resource invocations to the existing network.tf file. For variety, the
author is going to create a second file for the EC2 compute devices. When multiple *.tf configuration files
exist, they are loaded in alphabetical order, but that’s largely irrelevant since Terraform is smart enough to
create/destroy resources in the appropriate sequence regardless of the file names.

Edit a file called “services.tf” in your favorite text editor and apply the following configuration to deploy a
Cisco ASAv and CSR1000v within the us-east-1a AZ. The AMI for the CSR1000v is the same one used in
the AWS CLI demonstration. The AMI for the ASAv is the BYOL version, which was derived using the AWS
CLI describe-instances. Both instances are placed in the newly created subnet within the newly created
VPC, keeping everything separate from any existing AWS resources. Just like with the CSR1000v images,
Cisco requires the user to accept the terms of a license agreement before usage. One must navigate the
the following page first, subscribe, and accept the terms prior to attempting to start this instance or launch
will result in an error. Visit this link for details.

# Cisco ASAv BYOL

resource "aws_instance" "dmz_asav" {

ami = "ami-4fbf3c30"

instance_type = "m4.large"

Copyright 2021 Nicholas Russo http://njrusmc.net 68

https://aws.amazon.com/marketplace/pp/B00WRGASUC
http://njrusmc.net


subnet_id = "${aws_subnet.dmz.id}"

tags = {

Name = "dmz_asav"

}

}

# Cisco CSR1000v BYOL

resource "aws_instance" "dmz_csr1000v" {

ami = "ami-0d1e6af4c329efd82"

instance_type = "t2.medium"

subnet_id = "${aws_subnet.dmz.id}"

tags = {

Name = "dmz_csr1000v"

}

}

Once the Terraform plan files have been configured, use terraform init. This scans all the plan files for
any required plugins. In this case, the AWS provider is needed given the types of resource invocations
present. To keep the initial Terraform binary small, individual provider plugins are not included and are
downloaded as-needed. Like most good tools, Terraform is very verbose and provides hints and help along
the way. The output below represents a successful setup.

[ec2-user@devbox tf-demo]# terraform init

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "aws" (1.54.0)...

The following providers do not have any version constraints in configuration,

so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking

changes, it is recommended to add version = "..." constraints to the

corresponding provider blocks in configuration, with the constraint strings

suggested below.

* provider.aws: version = "~> 1.54"

Terraform has been successfully initialized!

[snip]

Now, run terraform plan which loads all the HCL files (.tf) and determines what changes are needed.
Since there is no state already and this plan hasn’t been written to a file, its best to use this output as
an opportunity to review the plan. The fields labeled as <computed> are automatically generated and are
available for use by the Terraform operator later. The output is very long, and future iterations of this output
will be snipped for brevity.

[ec2-user@devbox tf-demo]# terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

------------------------------------------------------------------------

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

Copyright 2021 Nicholas Russo http://njrusmc.net 69

http://njrusmc.net


+ aws_instance.dmz_asav

id: <computed>

ami: "ami-4fbf3c30"

arn: <computed>

associate_public_ip_address: <computed>

availability_zone: <computed>

cpu_core_count: <computed>

cpu_threads_per_core: <computed>

ebs_block_device.#: <computed>

ephemeral_block_device.#: <computed>

get_password_data: "false"

host_id: <computed>

instance_state: <computed>

instance_type: "m4.large"

ipv6_address_count: <computed>

ipv6_addresses.#: <computed>

key_name: <computed>

network_interface.#: <computed>

network_interface_id: <computed>

password_data: <computed>

placement_group: <computed>

primary_network_interface_id: <computed>

private_dns: <computed>

private_ip: <computed>

public_dns: <computed>

public_ip: <computed>

root_block_device.#: <computed>

security_groups.#: <computed>

source_dest_check: "true"

subnet_id: "${aws_subnet.dmz.id}"

tags.%: "1"

tags.Name: "dmz_asav"

tenancy: <computed>

volume_tags.%: <computed>

vpc_security_group_ids.#: <computed>

+ aws_instance.dmz_csr1000v

id: <computed>

ami: "ami-0d1e6af4c329efd82"

arn: <computed>

associate_public_ip_address: <computed>

availability_zone: <computed>

cpu_core_count: <computed>

cpu_threads_per_core: <computed>

ebs_block_device.#: <computed>

ephemeral_block_device.#: <computed>

get_password_data: "false"

host_id: <computed>

instance_state: <computed>

instance_type: "t2.medium"

ipv6_address_count: <computed>

ipv6_addresses.#: <computed>

key_name: <computed>

network_interface.#: <computed>

network_interface_id: <computed>

password_data: <computed>

placement_group: <computed>

primary_network_interface_id: <computed>

private_dns: <computed>

Copyright 2021 Nicholas Russo http://njrusmc.net 70

http://njrusmc.net


private_ip: <computed>

public_dns: <computed>

public_ip: <computed>

root_block_device.#: <computed>

security_groups.#: <computed>

source_dest_check: "true"

subnet_id: "${aws_subnet.dmz.id}"

tags.%: "1"

tags.Name: "dmz_csr1000v"

tenancy: <computed>

volume_tags.%: <computed>

vpc_security_group_ids.#: <computed>

+ aws_subnet.dmz

id: <computed>

arn: <computed>

assign_ipv6_address_on_creation: "false"

availability_zone: "us-east-1a"

availability_zone_id: <computed>

cidr_block: "203.0.113.64/26"

ipv6_cidr_block: <computed>

ipv6_cidr_block_association_id: <computed>

map_public_ip_on_launch: "false"

owner_id: <computed>

tags.%: "1"

tags.Name: "dmz"

vpc_id: "${aws_vpc.tfvpc.id}"

+ aws_vpc.tfvpc

id: <computed>

arn: <computed>

assign_generated_ipv6_cidr_block: "false"

cidr_block: "203.0.113.0/24"

default_network_acl_id: <computed>

default_route_table_id: <computed>

default_security_group_id: <computed>

dhcp_options_id: <computed>

enable_classiclink: <computed>

enable_classiclink_dns_support: <computed>

enable_dns_hostnames: <computed>

enable_dns_support: "true"

instance_tenancy: "default"

ipv6_association_id: <computed>

ipv6_cidr_block: <computed>

main_route_table_id: <computed>

owner_id: <computed>

tags.%: "1"

tags.Name: "tfvpc"

Plan: 4 to add, 0 to change, 0 to destroy.

------------------------------------------------------------------------

Note: You didn't specify an "-out" parameter to save this plan, so Terraform

can't guarantee that exactly these actions will be performed if

"terraform apply" is subsequently run.

Running the command again and specifying an optional output file allows the plan to be saved to disk.

Copyright 2021 Nicholas Russo http://njrusmc.net 71

http://njrusmc.net


[ec2-user@devbox tf-demo]# terraform plan -out=plan.tfstate

[snip]

+ aws_instance.dmz_asav

[snip]

+ aws_instance.dmz_csr1000v

[snip]

+ aws_subnet.dmz

[snip]

+ aws_vpc.tfvpc

[snip]

Plan: 4 to add, 0 to change, 0 to destroy.

------------------------------------------------------------------------

This plan was saved to: plan.tfstate

To perform exactly these actions, run the following command to apply:

terraform apply "plan.tfstate"

Executing terraform apply plan.tfstate instructs Terraform to make this plan (the intended configu-
ration) become the new reality. Terraform is smart enough to deploy the resources in the correct se-
quence when dependencies exist, such as the subnet referencing the VPC, and the EC2 instances ref-
erencing the subnet. The output from the apply command is similar to plan in its formatting and display,
but because it is running in realtime, it provides status updates. Also note that the newly-created subnet
subnet-01461157fed507e7b was correctly referenced by the EC2 instances.

[ec2-user@devbox tf-demo]# terraform apply plan.tfstate

aws_vpc.tfvpc: Creating...

arn: "" => "<computed>"

assign_generated_ipv6_cidr_block: "" => "false"

cidr_block: "" => "203.0.113.0/24"

[snip]

tags.%: "" => "1"

tags.Name: "" => "tfvpc"

aws_vpc.tfvpc: Creation complete after 1s (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Creating...

arn: "" => "<computed>"

assign_ipv6_address_on_creation: "" => "false"

availability_zone: "" => "us-east-1a"

availability_zone_id: "" => "<computed>"

cidr_block: "" => "203.0.113.64/26"

[snip]

tags.%: "" => "1"

tags.Name: "" => "dmz"

vpc_id: "" => "vpc-0edde0f2f198451e1"

aws_subnet.dmz: Creation complete after 1s (ID: subnet-01461157fed507e7b)

aws_instance.dmz_csr1000v: Creating...

ami: "" => "ami-0d1e6af4c329efd82"

arn: "" => "<computed>"

[snip]

source_dest_check: "" => "true"

subnet_id: "" => "subnet-01461157fed507e7b"

tags.%: "" => "1"

tags.Name: "" => "dmz_csr1000v"

tenancy: "" => "<computed>"

Copyright 2021 Nicholas Russo http://njrusmc.net 72

http://njrusmc.net


volume_tags.%: "" => "<computed>"

vpc_security_group_ids.#: "" => "<computed>"

aws_instance.dmz_asav: Creating...

ami: "" => "ami-4fbf3c30"

arn: "" => "<computed>"

[snip]

source_dest_check: "" => "true"

subnet_id: "" => "subnet-01461157fed507e7b"

tags.%: "" => "1"

tags.Name: "" => "dmz_asav"

tenancy: "" => "<computed>"

volume_tags.%: "" => "<computed>"

vpc_security_group_ids.#: "" => "<computed>"

aws_instance.dmz_csr1000v: Still creating... (10s elapsed)

aws_instance.dmz_asav: Still creating... (10s elapsed)

aws_instance.dmz_asav: Creation complete after 15s (ID: i-03ac772e458bb9282)

aws_instance.dmz_csr1000v: Still creating... (20s elapsed)

aws_instance.dmz_csr1000v: Still creating... (30s elapsed)

aws_instance.dmz_csr1000v: Creation complete after 32s (ID: i-04e2992781578b002)

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

Quickly verify that the instances were successfully created and are powering up. It’s best to do this verifica-
tion outside of Terraform just to confirm from multiple sources that the infrastructure is working as expected.
Using the AWS CLI with a detailed query, one can limit the output to just a few lines, effectively only collect-
ing the Status value. Note that the two instance IDs specified here are annotated above in the output from
Terraform.

[ec2-user@devbox tf-demo]# aws ec2 describe-instance-status \

> --instance-ids 'i-03ac772e458bb9282' 'i-04e2992781578b002' \

> --query InstanceStatuses[*].InstanceStatus.Status

[

"initializing",

"initializing"

]

For those preferring visual confirmation, below is a screenshot from the AWS console showing these par-
ticular instances running. Note that both instances are in the correct AZ of us-east-1a as well.

Figure 36: Verifying EC2 Instances Made By Terraform

Quickly checking the subnet details in the AWS console confirm that the subnet is in the correct VPC, AZ,
and has the right IPv4 CIDR range.

Copyright 2021 Nicholas Russo http://njrusmc.net 73

http://njrusmc.net


Figure 37: Verifying VPC Subnet Made By Terraform

Going back to Terraform, notice that a new terraform.tfstate file has been created. This represents the
new infrastructure state after the Terraform plan was applied. Use terraform show to view the file, which
contains all the computed fields filled in, such as the ARN value.

[ec2-user@devbox tf-demo]# ls -l

total 28

-rw-rw-r-- 1 ec2-user ec2-user 533 Jan 1 18:54 network.tf

-rw-rw-r-- 1 ec2-user ec2-user 7437 Jan 1 19:00 plan.tfstate

-rw-rw-r-- 1 ec2-user ec2-user 417 Jan 1 18:59 services.tf

-rw-rw-r-- 1 ec2-user ec2-user 10917 Jan 1 19:01 terraform.tfstate

[ec2-user@devbox tf-demo]# terraform show

aws_instance.dmz_asav:

id = i-03ac772e458bb9282

ami = ami-4fbf3c30

arn = arn:aws:ec2:us-east-1:043535020805:instance/i-03ac772e458bb9282

associate_public_ip_address = false

availability_zone = us-east-1a

cpu_core_count = 1

cpu_threads_per_core = 2

credit_specification.# = 1

credit_specification.0.cpu_credits = standard

[snip]

Running terraform plan again provides a diff-like report on what changes need to be made to the in-
frastructure to implement the plan. Since no new changes have been made manually to the environment
(outside of Terraform), no updates are needed.

[ec2-user@devbox tf-demo]# terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

aws_vpc.tfvpc: Refreshing state... (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Refreshing state... (ID: subnet-01461157fed507e7b)

aws_instance.dmz_csr1000v: Refreshing state... (ID: i-04e2992781578b002)

aws_instance.dmz_asav: Refreshing state... (ID: i-03ac772e458bb9282)

------------------------------------------------------------------------

No changes. Infrastructure is up-to-date.

This means that Terraform did not detect any differences between your

configuration and real physical resources that exist. As a result, no

actions need to be performed.

Suppose a clumsy user accidentally deletes the CSR1000v as shown below. Wait for the instance to be
terminated.

[ec2-user@devbox tf-demo]# aws ec2 terminate-instances \

Copyright 2021 Nicholas Russo http://njrusmc.net 74

http://njrusmc.net


> --instance-ids i-04e2992781578b002

{

"TerminatingInstances": [

{

"InstanceId": "i-04e2992781578b002",

"CurrentState": {

"Code": 32,

"Name": "shutting-down"

},

"PreviousState": {

"Code": 16,

"Name": "running"

}

}

]

}

Using terraform plan now detects a change and suggests needing to add 1 more resource to the infras-
tructure make the intended plan a reality. Simple use terraform apply to update the infrastructure and
answer yes to confirm. Note that you cannot simply rerun plan.tfstate because it was created against an
old state (ie, an old diff between intended and actual states).

[ec2-user@devbox tf-demo]# terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

aws_vpc.tfvpc: Refreshing state... (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Refreshing state... (ID: subnet-01461157fed507e7b)

aws_instance.dmz_asav: Refreshing state... (ID: i-03ac772e458bb9282)

aws_instance.dmz_csr1000v: Refreshing state... (ID: i-04e2992781578b002)

------------------------------------------------------------------------

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

+ aws_instance.dmz_csr1000v

id: <computed>

ami: "ami-0d1e6af4c329efd82"

arn: <computed>

[snip]

Plan: 1 to add, 0 to change, 0 to destroy.

[ec2-user@devbox tf-demo]# terraform apply

aws_vpc.tfvpc: Refreshing state... (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Refreshing state... (ID: subnet-01461157fed507e7b)

aws_instance.dmz_asav: Refreshing state... (ID: i-03ac772e458bb9282)

aws_instance.dmz_csr1000v: Refreshing state... (ID: i-04e2992781578b002)

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

+ create

Copyright 2021 Nicholas Russo http://njrusmc.net 75

http://njrusmc.net


Terraform will perform the following actions:

+ aws_instance.dmz_csr1000v

id: <computed>

ami: "ami-0d1e6af4c329efd82"

arn: <computed>

[snip]

source_dest_check: "true"

subnet_id: "subnet-01461157fed507e7b"

tags.%: "1"

tags.Name: "dmz_csr1000v"

tenancy: <computed>

volume_tags.%: <computed>

vpc_security_group_ids.#: <computed>

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: yes

aws_instance.dmz_csr1000v: Creating...

ami: "" => "ami-0d1e6af4c329efd82"

arn: "" => "<computed>"

[snip]

source_dest_check: "" => "true"

subnet_id: "" => "subnet-01461157fed507e7b"

tags.%: "" => "1"

tags.Name: "" => "dmz_csr1000v"

tenancy: "" => "<computed>"

volume_tags.%: "" => "<computed>"

vpc_security_group_ids.#: "" => "<computed>"

aws_instance.dmz_csr1000v: Still creating... (10s elapsed)

aws_instance.dmz_csr1000v: Still creating... (20s elapsed)

aws_instance.dmz_csr1000v: Still creating... (30s elapsed)

aws_instance.dmz_csr1000v: Creation complete after 32s (ID: i-05d5bb841cf4e2ad1)

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The new instance is currently initializing, and Terraform plan says all is well.

[ec2-user@devbox tf-demo]# aws ec2 describe-instance-status \

> --instance-ids 'i-05d5bb841cf4e2ad1' \

> --query InstanceStatuses[*].InstanceStatus.Status

[

"initializing"

]

[ec2-user@devbox tf-demo]# terraform plan

[snip]

No changes. Infrastructure is up-to-date.

To cleanup, use terraform plan -destroy to view a plan to remove all of the resources added by Ter-
raform. This is a great way to ensure no residual AWS resources are left in place (and costing money) long
after they are needed.

[ec2-user@devbox tf-demo]# terraform plan -destroy

Copyright 2021 Nicholas Russo http://njrusmc.net 76

http://njrusmc.net


Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

aws_vpc.tfvpc: Refreshing state... (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Refreshing state... (ID: subnet-01461157fed507e7b)

aws_instance.dmz_csr1000v: Refreshing state... (ID: i-05d5bb841cf4e2ad1)

aws_instance.dmz_asav: Refreshing state... (ID: i-03ac772e458bb9282)

------------------------------------------------------------------------

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

- destroy

Terraform will perform the following actions:

- aws_instance.dmz_asav

- aws_instance.dmz_csr1000v

- aws_subnet.dmz

- aws_vpc.tfvpc

Plan: 0 to add, 0 to change, 4 to destroy.

The command above serves as a good preview into what terraform destroy will perform. Below, the
infrastructure is torn down in the reverse order it was created. Note that -auto-approve can be appended
to both apply and destroy actions to remove the interactive prompt asking for yes.

[ec2-user@devbox tf-demo]# terraform destroy -auto-approve

aws_vpc.tfvpc: Refreshing state... (ID: vpc-0edde0f2f198451e1)

aws_subnet.dmz: Refreshing state... (ID: subnet-01461157fed507e7b)

aws_instance.dmz_csr1000v: Refreshing state... (ID: i-05d5bb841cf4e2ad1)

aws_instance.dmz_asav: Refreshing state... (ID: i-03ac772e458bb9282)

aws_instance.dmz_csr1000v: Destroying... (ID: i-05d5bb841cf4e2ad1)

aws_instance.dmz_asav: Destroying... (ID: i-03ac772e458bb9282)

aws_instance.dmz_asav: Still destroying... (ID: i-03ac772e458bb9282, 10s elapsed)

aws_instance.dmz_csr1000v: Still destroying... (ID: i-05d5bb841cf4e2ad1, 10s elapsed)

aws_instance.dmz_csr1000v: Still destroying... (ID: i-05d5bb841cf4e2ad1, 20s elapsed)

aws_instance.dmz_asav: Still destroying... (ID: i-03ac772e458bb9282, 20s elapsed)

aws_instance.dmz_asav: Still destroying... (ID: i-03ac772e458bb9282, 30s elapsed)

aws_instance.dmz_csr1000v: Still destroying... (ID: i-05d5bb841cf4e2ad1, 30s elapsed)

aws_instance.dmz_asav: Destruction complete after 40s

aws_instance.dmz_csr1000v: Still destroying... (ID: i-05d5bb841cf4e2ad1, 40s elapsed)

[snip, waiting for CSR1000v to terminate]

aws_instance.dmz_csr1000v: Still destroying... (ID: i-05d5bb841cf4e2ad1, 2m50s elapsed)

aws_instance.dmz_csr1000v: Destruction complete after 2m51s

aws_subnet.dmz: Destroying... (ID: subnet-01461157fed507e7b)

aws_subnet.dmz: Destruction complete after 1s

aws_vpc.tfvpc: Destroying... (ID: vpc-0edde0f2f198451e1)

aws_vpc.tfvpc: Destruction complete after 0s

Destroy complete! Resources: 4 destroyed.

Using terraform plan -destroy again says there is nothing left to destroy, indicating that everything has
been cleaned up. Further verification via AWS CLI or AWS console may be desirable, but for brevity, the
author excludes it here.

Copyright 2021 Nicholas Russo http://njrusmc.net 77

http://njrusmc.net


[ec2-user@devbox tf-demo]# terraform plan -destroy

[snip]

No changes. Infrastructure is up-to-date.

1.9.6 Flask Application Monitoring with Prometheus

Prometheus is an open-source monitoring system with a dimensional data model, flexible query language,
efficient time series database and modern alerting approach. To instrument a Python application, a Prometheus
client library is installed and is accessed within the application’s source code. This allows Prometheus to
collect and export metrics about the application’s performance, improving observability and overall applica-
tion awareness. Python Flask is a lightweight web services framework that simplifies the creation of web
applications. Instrumenting a simple Flask application is a great way to demonstrate Prometheus, and to
do that, we’ll install both the flask and prometheus-flask-exporter packages.

[ec2-user@devbox prom_test]# pip install flask prometheus-flask-exporter

Collecting flask

Collecting prometheus_flask_exporter

(snip)

Successfully installed flask-1.1.2 prometheus-flask-exporter-0.18.1 (snip)

Prometheus offers four main metric types to monitor an application:

1. counter: This metric counts the number of times a certain operation occurs, such as a function being
called or an exception being raised. Counters can only increase and always start from 0.

2. gauge: Like a counter, a gauge measures a specific numeric value, but can rise and fall arbitrarily.
Gauges can be used to monitor CPU utilization, memory usage, and the number of currently executing
jobs.

3. histogram: Histograms are complex metric types that typically measure request durations or re-
sponse sizes. These values are placed into buckets which can be viewed as a time-series, making
them good candidates for detailed statistical analysis (beyond the scope of this document).

4. summary: This metric preceded the histogram and largely behaves the same with some low-level
technical differences regarding how quantiles are calculated. Prometheus published a comparison
chart with more details here.

In this demo, we’ll test first three metric types (summary metrics aren’t relevant for this book). The Flask
application has four URLs available which are well-commented in the code below. The application is a trivial
and function-less product ordering and fulfillment system that uses random sleep timers to simulate complex
tasks being accomplished by the system. The @metrics.XYZ decorator where XYZ is the metric type is the
manner in which metrics are associated with each function. The two positional arguments correspond to
the metric’s name and description.

#!/usr/bin/env python

"""

Author: Nick Russo

Purpose: Trivial Flask app to demonstrate Prometheus metric types.

"""

import random

import time

from flask import Flask

from prometheus_flask_exporter import PrometheusMetrics

# Create Flask app and pass it into Prometheus for monitoring

# Individual Flask routes (HTTP resources) are decorated with metrics

app = Flask(__name__)

metrics = PrometheusMetrics(app)

Copyright 2021 Nicholas Russo http://njrusmc.net 78

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/practices/histograms/
http://njrusmc.net


@app.route("/")

def index():

"""Main page; just for connectivity testing"""

return "OK"

@app.route("/orders")

@metrics.counter("counter_orders", "Number of orders placed")

def orders():

"""Place a new order and track using a counter (only goes up)"""

return "Thanks for placing an order!"

@app.route("/fulfillment")

@metrics.gauge("gauge_fulfillment", "Concurrent fulfillment processes running")

def fulfillment():

"""Measure concurrent order fulfillment using a gauge (goes up and down)"""

sleep_time = random.uniform(5.0, 10.0)

time.sleep(sleep_time)

return f"Last order was fulfilled in {round(sleep_time, 2)} seconds."

@app.route("/service")

@metrics.histogram("histogram_service", "Customer service wait times")

def service():

"""Measure caller wait times using a histogram (bucket-based runtimes)"""

sleep_time = random.uniform(0.0, 11.0)

time.sleep(sleep_time)

return f"Customer service wait time is: {round(sleep_time, 2)} seconds."

if __name__ == "__main__":

app.run(host="0.0.0.0")

To keep things simple, a basic HTTP GET to each resource will be adequate to generate the necessary
metrics. This makes it easy to test with web browsers, desktop tools (e.g. Postman), and CLI tools. We’ll
start the web server on the devbox, then use curl to validate connectivity from a second machine that will
soon be running the Prometheus server.

[ec2-user@devbox prom_test]# python app.py

* Debug mode: off

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

[centos@prometheus ~]# curl http://devbox.njrusmc.net:5000/

OK

We can also send a GET request to the /metrics endpoint which reveals the structured data that Prometheus
interprets (also known as “scrapes”). There is a ton of data here, so the author has omitted much of it in
order to highlight the most important parts. The first block are default metrics that are exported with Flask
thanks to the Python package in use. These metrics capture request processing times along with the
HTTP method, path, and status code. For this demo, we’ll focus more on our custom measurements which
were named counter_orders, gauge_fulfillment, and histogram_service. They are separated by line
breaks in the output below for cleanliness, and some of these metrics have multiple measurements with
slightly different names.

[centos@prometheus ~]# curl http://devbox.njrusmc.net:5000/metrics

# HELP flask_http_request_duration_seconds Flask HTTP request duration in seconds

# TYPE flask_http_request_duration_seconds histogram

flask_http_request_duration_seconds_bucket{le="0.005",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.01",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.025",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.05",method="GET",path="/",status="200"} 1.0

Copyright 2021 Nicholas Russo http://njrusmc.net 79

http://njrusmc.net


flask_http_request_duration_seconds_bucket{le="0.075",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.1",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.25",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.5",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="0.75",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="1.0",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="2.5",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="5.0",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="7.5",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="10.0",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_bucket{le="+Inf",method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_count{method="GET",path="/",status="200"} 1.0

flask_http_request_duration_seconds_sum{method="GET",path="/",status="200"} 0.00011417699897720013

# HELP counter_orders_total Number of orders placed

# TYPE counter_orders_total counter

counter_orders_total 0.0

# HELP gauge_fulfillment Concurrent fulfillment processes running

# TYPE gauge_fulfillment gauge

gauge_fulfillment 0.0

# HELP histogram_service Customer service wait times

# TYPE histogram_service histogram

histogram_service_bucket{le="0.005"} 0.0

histogram_service_bucket{le="0.01"} 0.0

histogram_service_bucket{le="0.025"} 0.0

histogram_service_bucket{le="0.05"} 0.0

histogram_service_bucket{le="0.075"} 0.0

histogram_service_bucket{le="0.1"} 0.0

histogram_service_bucket{le="0.25"} 0.0

histogram_service_bucket{le="0.5"} 0.0

histogram_service_bucket{le="0.75"} 0.0

histogram_service_bucket{le="1.0"} 0.0

histogram_service_bucket{le="2.5"} 0.0

histogram_service_bucket{le="5.0"} 0.0

histogram_service_bucket{le="7.5"} 0.0

histogram_service_bucket{le="10.0"} 0.0

histogram_service_bucket{le="+Inf"} 0.0

histogram_service_count 0.0

histogram_service_sum 0.0

Now that we are confident that the Prometheus server and client (Flask) have connectivity, we can start
configuring Prometheus. According to the Prometheus documentation, we should create a YAML file that
identifies the Prometheus targets (clients) and how often to scrape metrics from them. We’ll use a 5 second
scrape and evaluation interval, giving us relatively fast feedback regarding our application’s performance.
Then, we specify the host and port information as a static target for this simple demonstration.

[centos@prometheus ~]# cat prometheus.yml

---

global:

scrape_interval: "5s"

evaluation_interval: "5s"

scrape_configs:

- job_name: "etech"

static_configs:

- targets: ["devbox.njrusmc.net:5000"]

...

Copyright 2021 Nicholas Russo http://njrusmc.net 80

https://prometheus.io/docs/introduction/first_steps/
http://njrusmc.net


Next, we can use the command below to pull and run the official container. Note that we use a bind-mount to
map our local prometheus.yml file to the Prometheus configuration file on the server with the same name.

[centos@prometheus ~]# docker run \

--publish 9090:9090 \

--volume /home/centos/prometheus.yml:/etc/prometheus/prometheus.yml \

--detach prom/prometheus

c1b35f65b70b0292e1e58e9d6ce74a155a229940231b910d6c529d0415a0d330

Once Prometheus is running, we can simulate a “high volume” of customer interaction using a simple Bash
script. First, the script places some orders, which is fast and runs synchronously as there is no sleep timer.
Then, the script checks fulfillment and service statuses in the background to allow concurrent issuance of
multiple requests.

[centos@prometheus ~]# cat generate_activity.sh

#!/bin/bash

for i in {1..5}; do

curl http://devbox.njrusmc.net:5000/orders

done

for i in {1..3}; do

curl http://devbox.njrusmc.net:5000/fulfillment &

done

for i in {1..20}; do

curl http://devbox.njrusmc.net:5000/service &

done

Next, we’ll run the script and wait for it to finish.

[centos@prometheus ~]# ./generate_activity.sh

Thanks for placing an order!

Thanks for placing an order!

Thanks for placing an order!

Thanks for placing an order!

Thanks for placing an order!

Customer service wait time is: 0.09 seconds.

Customer service wait time is: 0.19 seconds.

Customer service wait time is: 0.81 seconds.

Customer service wait time is: 0.86 seconds.

Customer service wait time is: 1.71 seconds.

Customer service wait time is: 2.91 seconds.

Customer service wait time is: 3.11 seconds.

Customer service wait time is: 3.32 seconds.

Customer service wait time is: 3.91 seconds.

Customer service wait time is: 4.39 seconds.

Customer service wait time is: 5.17 seconds.

Customer service wait time is: 6.06 seconds.

Customer service wait time is: 6.13 seconds.

Customer service wait time is: 6.36 seconds.

Customer service wait time is: 6.78 seconds.

Last order was fulfilled in 6.96 seconds.

Customer service wait time is: 7.12 seconds.

Last order was fulfilled in 7.69 seconds.

Last order was fulfilled in 8.47 seconds.

Customer service wait time is: 8.76 seconds.

Customer service wait time is: 9.93 seconds.

Customer service wait time is: 10.92 seconds.

Customer service wait time is: 10.97 seconds.

As a quick confirmation, we can use curl again to the /metrics endpoint to ensure our metrics have
changed. We see 5 orders and 20 service calls, but 0 fulfillment requests. That’s because the gauge only

Copyright 2021 Nicholas Russo http://njrusmc.net 81

http://njrusmc.net


measures point-in-time concurrent requests, which reached up to 3 at one point. That peak should be
reflected in the Prometheus UI which we’ll check soon.

[centos@prometheus ~]# curl http://devbox.njrusmc.net:5000/metrics

(snipped in various places)

counter_orders_total 5.0

gauge_fulfillment 0.0

histogram_service_bucket{le="0.005"} 0.0

histogram_service_bucket{le="0.01"} 0.0

histogram_service_bucket{le="0.025"} 0.0

histogram_service_bucket{le="0.05"} 0.0

histogram_service_bucket{le="0.075"} 0.0

histogram_service_bucket{le="0.1"} 1.0

histogram_service_bucket{le="0.25"} 2.0

histogram_service_bucket{le="0.5"} 2.0

histogram_service_bucket{le="0.75"} 2.0

histogram_service_bucket{le="1.0"} 4.0

histogram_service_bucket{le="2.5"} 5.0

histogram_service_bucket{le="5.0"} 10.0

histogram_service_bucket{le="7.5"} 16.0

histogram_service_bucket{le="10.0"} 18.0

histogram_service_bucket{le="+Inf"} 20.0

histogram_service_count 20.0

histogram_service_sum 99.58115865300897

Next, open a web browser to the Prometheus server on port 9090 as specified in our docker container run

command. Under “Status” and “Targets”, our devbox target is fully operational as expected. If the target is
not up, Prometheus cannot scrape metrics.

Figure 38: Prometheus Target Status

Next, head to “Graph” and enter a metric to track. We’ll start with counter_orders_total which, as the
name implies, counts the total number of orders placed. Our activity script generated 5 orders and we see
them reflected in the bottom right corner of the graphic.

Figure 39: Prometheus Counter Metric — Table

Rather than view this in table form, click the “Graph” tab within the panel to see a graphical representation of

Copyright 2021 Nicholas Russo http://njrusmc.net 82

http://njrusmc.net


the counter. In our case, we generated 5 requests in short succession, leading to a rapid, one-time increase
in orders.

Figure 40: Prometheus Counter Metric — Graph

We can repeat the process for the gauge metric. To prove that Prometheus really saw 3 concurrent fulfill-
ment requests, we can set a time range during the processing peak before the gauge decreased back to
0.

Figure 41: Prometheus Gauge Metric — Table

This is further proved by exploring the graph, shown below. Unlike a counter, the gauge rose to 3 then fell
to 0 once the processing was complete.

Copyright 2021 Nicholas Russo http://njrusmc.net 83

http://njrusmc.net


Figure 42: Prometheus Gauge Metric — Graph

Last, we can collect the histogram data, and the most interesting measurements are often the completion
time buckets. Each bucket is successively larger using a “less than” operator, allowing operators to track
performance over time and using various tiers. The table format is shown below, indicating the number of
matches per bucket. Don’t worry about the exact values quite yet.

Copyright 2021 Nicholas Russo http://njrusmc.net 84

http://njrusmc.net


Figure 43: Prometheus Histogram Metric — Table

The graph view is very appealing as it shows all of the different buckets as a stacked graph using different
colors. In the context of measuring real-life call center performance, such a chart would be quite useful.

Figure 44: Prometheus Histogram Metric — Graph

Copyright 2021 Nicholas Russo http://njrusmc.net 85

http://njrusmc.net


While the Prometheus GUI is very useful for validating the collection of metrics and building some basic
visualizations, it is inadequate for production operations by itself. Most professional organizations prefer
to export these logs to dashboard applications like Grafana and Kibana, and many tutorials exist on the
precise technical steps to enable those integrations. Additionally, a more generic Prometheus client for
Python exists named prometheus-client. This package is a dependency of the prometheus-flask-exporter
package used in this demo as the latter is Flask-specific. If you are working in a non-Flask environment, be
sure to explore the generic package.

1.10 References and Resources

1. Cisco Cloud Homepage

2. Openstack Components

3. Unleashing IT (Cisco)

4. Openstack Whitepaper

5. Installing Packstack

6. Cisco Cloud Fundamentals

7. Designing Networks and Services for the Cloud

8. Cisco DNA Center (DNA-C)

9. Cisco Software Defined Access (SDA)

10. Cisco Cloud Center

11. Docker Overview

12. Kubernetes Overview

13. ETSI NFV Whitepaper

14. ETSI NFV Architectural Framework

15. Cisco NFV Infrastructure For Service Providers

16. Cisco NFV Infrastructure Software

17. Cisco Application Centric Infrastructure (ACI)

18. Cisco SD-WAN Infographic

19. AWS CLI Index Page

20. Terraform Main Page

Copyright 2021 Nicholas Russo http://njrusmc.net 86

https://grafana.com/
https://www.elastic.co/kibana
https://pypi.org/project/prometheus-client
https://pypi.org/project/prometheus-flask-exporter
http://www.cisco.com/go/cloud
https://en.wikipedia.org/wiki/OpenStack#Components
http://www.unleashingit.com/
http://getcloudify.org/2014/07/18/openstack-wiki-open-cloud.html
http://rdoproject.org/install/packstack/
https://learningnetworkstore.cisco.com/store-search?searchPhrase=CLDFND
http://www.ciscopress.com/store/designing-networks-and-services-for-the-cloud-delivering-9781587142949
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-09-dna-center-data-sheet-cte-en.html
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/software-defined-access/solution-overview-c22-739012.pdf?oid=sowen000311
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/cloudcenter/white-paper-c11-737224.pdf
https://www.docker.com/what-docker
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/network-functions-virtualization-nfv-infrastructure/pa-cisco-nfv-infrastructure-solution-brief.pdf
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-functions-virtualization-nfv/datasheet-c78-738570.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/sd-wan/nb-07-cte-infograph-golin-en.pdf
https://docs.aws.amazon.com/cli/index.html#lang/en_us
https://www.terraform.io/
http://njrusmc.net


2 Network Programmability

2.1 Data models and structures

Other protocols and languages, such as NETCONF and YANG, also help automate/simplify network man-
agement indirectly. NETCONF (RFC6241) is the protocol by which configurations are installed and changed.
YANG (RFC6020) is the modeling language used to represent device configuration and state, much like
eXtensible Markup Language (XML). Put simply, NETCONF is a transport vessel for YANG information to
be transferred from a network management system (NMS) to a network device. Although YANG can be
quite complex to humans, it is similar to SNMP; it is simple for machines. YANG is an abstraction away
from network device CLIs which promotes simplified management in cloud environments and a progres-
sive migration toward one of the SDN models discussed later in this document. Devices that implement
NETCONF/YANG provide a uniform manageability interface which means vendor hardware/software can
be swapped in a network without affecting the management architecture, operations, or strategy.

Previous revisions of this document claimed that NETCONF is to YANG as HTTP is to HTML. This is
not technically accurate, as NETCONF serializes data using XML. In HTML, Document Type Definitions
(DTDs) describe the building blocks of how the data is structured. This is the same role played by YANG
as it relates to XML. It would be more correct to say that DTD is to HTML over HTTP as YANG is to XML
over NETCONF. YANG can also be considered to be a successor to Simple Network Management Protocol
(SNMP) Management Information Base (MIB) definitions. These MIBs define how data is structured and
SNMP itself provides a transport, similar to NETCONF.

2.1.1 YANG

YANG defines how data is structured/modeled rather than containing data itself. Below is snippet from
RFC 6020 which defines YANG (section 4.2.2.1). The YANG model defines a “host-name” field as a string
(array of characters) with a human-readable description. Pairing YANG with NETCONF, the XML syntax
references the data field by its name to set a value.

YANG Example:

leaf host-name {

type string;

description "Hostname for this system";

}

NETCONF XML Example:

<host-name>my.example.com</host-name>

This section explores a YANG validation example using Cisco CSR1000v on modern “Everest” software.
This router is running as an EC2 instance inside AWS. Although the NETCONF router is not used until
later, it is important to check the software version to ensure we clone the right YANG models.

NETCONF_TEST#show version | include IOS_Software

Cisco IOS Software [Everest], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 16.6.1, RELEASE SOFTWARE (fc2)

YANG models for this particular version are publicly available on Github. Below, the repository is cloned
using SSH which captures all of the YANG models for all supported products, across all versions. The
repository is not particularly large, so cloning the entire thing is beneficial for future testing.

Nicholas-MBP:YANG nicholasrusso$ git clone git@github.com:YangModels/yang.git

Cloning into 'yang'...

remote: Counting objects: 10372, done.

remote: Compressing objects: 100% (241/241), done.

remote: Total 10372 (delta 74), reused 292 (delta 69), pack-reused 10062

Receiving objects: 100% (10372/10372), 19.95 MiB | 4.81 MiB/s, done.

Resolving deltas: 100% (6556/6556), done.

Copyright 2021 Nicholas Russo http://njrusmc.net 87

https://github.com/YangModels/yang/
http://njrusmc.net


Checking connectivity... done.

Checking out files: 100% (9212/9212), done.

Changing into the directory specific to the current IOS-XE version, verify that the EIGRP YANG model used
for this test is present. There are 245 total files in this directory which are the YANG models for many other
Cisco features, but are outside the scope of this demonstration.

Nicholass-MBP:~ nicholasrusso$ cd yang/vendor/cisco/xe/1661/

Nicholass-MBP:1661 nicholasrusso$ ls -1 | grep eigrp

Cisco-IOS-XE-eigrp.yang

Nicholass-MBP:1661 nicholasrusso$ ls -1 | wc

245 2198 20770

The YANG model itself is a C-style declaration of how data should be structured. The file is very long, and
the text below focuses on a few key EIGRP parameters. Specifically, the bandwidth-percent, hello-interval,
and hold-time. These are configured under the af-interface stanza within EIGRP named-mode. The af-
interface declaration is a list element with many leaf elements beneath it, which correspond to individual
configuration parameters.

Nicholass-MBP:1661 nicholasrusso$ cat Cisco-IOS-XE-eigrp.yang

module Cisco-IOS-XE-eigrp {

namespace "http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp";

prefix ios-eigrp;

import ietf-inet-types {

prefix inet;

}

import Cisco-IOS-XE-types {

prefix ios-types;

}

import Cisco-IOS-XE-interface-common {

prefix ios-ifc;

}

// [snip]

// the lines that follow are under "router eigrp address-family"

grouping eigrp-address-family-grouping {

list af-interface {

description

"Enter Address Family interface configuration";

key "name";

leaf name {

type string;

}

leaf bandwidth-percent {

description

"Set percentage of bandwidth percentage limit";

type uint32 {

range "1..999999";

}

}

leaf hello-interval {

description

"Configures hello interval";

type uint16;

}

leaf hold-time {

description

Copyright 2021 Nicholas Russo http://njrusmc.net 88

http://njrusmc.net


"Configures hold time";

type uint16;

}

// [snip]

Before exploring NETCONF, which will use this model to get/set configuration data on the router, this demon-
stration explores the pyang tool. This is a conversion tool to change YANG into different formats. The pyang
tool is available here. After extracting the archive, the tool is easily installed.

Nicholass-MBP:pyang-1.7.3 nicholasrusso$ python3 setup.py install

running install

running bdist_egg

running egg_info

writing top-level names to pyang.egg-info/top_level.txt

writing pyang.egg-info/PKG-INFO

writing dependency_links to pyang.egg-info/dependency_links.txt

[snip]

Nicholass-MBP:pyang-1.7.3 nicholasrusso$ which pyang

/Library/Frameworks/Python.framework/Versions/3.5/bin/pyang

The most basic usage of the pyang tool is to validate valid YANG syntax. Beware that running the tool
against a YANG model in a different directory means that pyang considers the local directory (not the one
containing the YANG model) for the search point for any YANG module dependencies. Below, an error
occurs since pyang cannot find imported modules relevant for the EIGRP YANG model.

Nicholass-MBP:YANG nicholasrusso$ pyang yang/vendor/cisco/xe/1661/Cisco-IOS-XE-eigrp.yang

yang/vendor/cisco/xe/1661/Cisco-IOS-XE-eigrp.yang:5: error: module

"ietf-inet-types" not found in search path

yang/vendor/cisco/xe/1661/Cisco-IOS-XE-eigrp.yang:10: error: module

"Cisco-IOS-XE-types" not found in search path

[snip]

Nicholass-MBP:YANG nicholasrusso$ echo $?

1

One could specify the module path using the --path option, but it is simpler to just navigate to the directory.
This allows pyang to see the imported data types such as those contained within ietf-inet-types. When
using pyang from this location, no output is returned, and the program exits successfully. It is usually a good
idea to validate YANG models before doing anything with them, especially committing them to a repository.

Nicholass-MBP:YANG nicholasrusso$ cd yang/vendor/cisco/xe/1661/

Nicholass-MBP:1661 nicholasrusso$ pyang Cisco-IOS-XE-eigrp.yang

Nicholass-MBP:1661 nicholasrusso$ echo $?

0

This confirms that the model has valid syntax. The pyang tool can also convert between different formats.
Below is a simple and lossless conversion of YANG syntax into XML. This YANG-to-XML format is known
as YIN, and pyang can generate pretty XML output based on the YANG model. This is an alternative way
to view, edit, or create data models. YIN format might be useful for Microsoft Powershell users. Powershell
makes XML parsing easy, and may not be as friendly to the YANG syntax.

Nicholass-MBP:1661 nicholasrusso$ pyang Cisco-IOS-XE-eigrp.yang \

> --format=yin --yin-pretty-strings

<?xml version="1.0" encoding="UTF-8"?>

<module name="Cisco-IOS-XE-eigrp"

xmlns="urn:ietf:params:xml:ns:yang:yin:1"

xmlns:ios-eigrp="http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp"

xmlns:inet="urn:ietf:params:xml:ns:yang:ietf-inet-types"

xmlns:ios-types="http://cisco.com/ns/yang/Cisco-IOS-XE-types"

Copyright 2021 Nicholas Russo http://njrusmc.net 89

https://pypi.python.org/pypi/pyang
http://njrusmc.net


xmlns:ios-ifc="http://cisco.com/ns/yang/Cisco-IOS-XE-interface-common"

xmlns:ios="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<namespace uri="http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp"/>

<prefix value="ios-eigrp"/>

<import module="ietf-inet-types">

<prefix value="inet"/>

</import>

<import module="Cisco-IOS-XE-types">

<prefix value="ios-types"/>

</import>

<import module="Cisco-IOS-XE-interface-common">

<prefix value="ios-ifc"/>

</import>

[snip]

<grouping name="eigrp-address-family-grouping">

<list name="af-interface">

<description>

<text>

Enter Address Family interface configuration

</text>

</description>

<key value="name"/>

<leaf name="name">

<type name="string"/>

</leaf>

<leaf name="bandwidth-percent">

<description>

<text>

Set percentage of bandwidth percentage limit

</text>

</description>

<type name="uint32">

<range value="1..999999"/>

</type>

</leaf>

<leaf name="hello-interval">

<description>

<text>

Configures hello interval

</text>

</description>

<type name="uint16"/>

</leaf>

<leaf name="hold-time">

<description>

<text>

Configures hold time

</text>

</description>

<type name="uint16"/>

</leaf>

[snip]

Everything shown above is unrelated to the NETCONF/YANG testing on the Cisco CSR1000v and is more
focused on viewing, validating, and converting YANG models between different formats. These YANG
models are already loaded into the Cisco IOS-XE images and do not need to be present on the management
station’s disks. Please see the NETCONF section for more information.

Copyright 2021 Nicholas Russo http://njrusmc.net 90

http://njrusmc.net


2.1.2 YAML

There are many options for storing data, as opposed to modeling it or defining its composition. One such
option is YAML Ain’t Markup Language (YAML). It solves a similar problem as XML since it is primarily
used for configuration files, but contains a subset of XML’s functionality as it was specifically designed to be
simpler. Below is an example of a YAML configuration, most likely some input for a provisioning script or
something similar. Note that YAML files typically begin with --- and end with ... as a best practice.

---

- process: "update static routes"

vrf: "customer1"

nexthop: "10.0.0.1"

devices:

- net: "192.168.0.0"

mask: "255.255.0.0"

state: "present"

- net: "172.16.0.0"

mask: "255.240.0.0"

state: "absent"

...

Note that YAML is technically not in the blueprint but the author is certain it is a critical skill for anyone
working with any form of network programmability.

2.1.3 JSON

JavaScript Object Notation (JSON) is another data modeling language that is similar to YAML in concept. It
was designed to be simpler than traditional markup languages and uses key/value pairs to store information.
The “value” of a given pair can be another key/value pair, which enables hierarchical data nesting. The
key/value pair structure and syntax is very similar to the dict data type in Python. Like YAML, JSON is
also commonly used for maintaining configuration files or as a form of structured feedback from a query or
API call. The next page displays a syntax example of JSON which represents the same data and same
structure as the YAML example.

[

{

"process": "update static routes",

"vrf": "customer1",

"nexthop": "10.0.0.1",

"devices": [

{

"net": "192.168.0.0",

"mask": "255.255.0.0",

"state": "present"

},

{

"net": "172.16.0.0",

"mask": "255.240.0.0",

"state": "absent"

}

]

}

]

More discussion around YAML and JSON is warranted since these two formats are very commonly used
today. YAML is considered to be a strict (or proper) superset of JSON. That is, any JSON data can be rep-
resented in YAML, but not vice versa. This is important to know when converting back and forth; converting
JSON to YAML should always succeed, but converting YAML to JSON may fail or yield unintended results.
Below is a straightforward conversion between YAML and JSON without any hidden surprises.

Copyright 2021 Nicholas Russo http://njrusmc.net 91

http://njrusmc.net


---

mylist:

- item: "pizza"

quantity: 1

- item: "wings"

quantity: 12

...

{

"mylist": [

{

"item": "pizza",

"quantity": 1

},

{

"item": "wings",

"quantity": 12

}

]

}

Next, observe an example of some potentially unexpected conversion results. While the JSON result is
technically correct, it lacks the shorthand “anchoring” technique available in YAML. The anchor, for exam-
ple, creates information that can be inherited by other dictionaries later. While the information is identical
between these two blocks and has no functional difference, some of these YAML shortcuts are advanta-
geous for encouraging code/data reuse. Another difference is that YAML natively supports comments using
the hash symbol # while JSON does not natively support comments.

---

anchor: anchor&

name: "Nick"

age: 31

clone:

<<: *anchor

...

{

"anchor": {

"name": "Nick",

"age": 31

},

"clone": {

"name": "Nick",

"age": 31

}

}

YANG isn’t directly comparable with YAML, JSON, and XML because it solves a different problem. If any
one of these languages solved all of the problems, then the others would not exist. Understanding the
business drivers and the problems to be solved using these tools is the key to choosing to right one.

2.1.4 XML

Data structured in XML is very common and has been popular for decades. XML is very verbose and
explicit, relying on starting and ending tags to identify the size/scope of specific data fields. The next page
shows an example of XML code resembling a similar structure as the previous YAML and JSON examples.
Note that the topmost root wrapper key is needed in XML but not for YAML or JSON.

Copyright 2021 Nicholas Russo http://njrusmc.net 92

http://njrusmc.net


<?xml version="1.0" encoding="UTF-8" ?>

<root>

<process>update static routes</process>

<vrf>customer1</vrf>

<nexthop>10.0.0.1</nexthop>

<devices>

<net>192.168.0.0</net>

<mask>255.255.0.0</mask>

<state>present</state>

</devices>

<devices>

<net>172.16.0.0</net>

<mask>255.240.0.0</mask>

<state>absent</state>

</devices>

</root>

2.2 Device programmability

An Application Programmability Interface (API) is meant to define a standard way of interfacing with a
software application or operating system. It may consist of functions (methods, routines, etc), protocols,
system call constructs, and other “hooks” for integration. Both the controllers and business applications
would need the appropriate APIs revealed for integration between the two. This makes up the northbound
communication path as discussed in section 2.1.5. By creating a common API for communications between
controllers and business applications, either one can be changed at any time without significantly impacting
the overall architecture.

A common API that is discussed within the networking world is the Representational State Transfer (REST)
API. REST represents an “architectural style” of transferring information between clients and servers. In
essence, it is a way of defining attributes or characteristics of how data is moved. REST is commonly
used with HTTP by combining traditional HTTP methods (GET, POST, PUT, DELETE, etc) and Universal
Resource Identifiers (URI). The end result is that API requests look like URIs and are used to fetch/write
specific pieces of data to a target machine. This simplification helps promote automation, especially for
web-based applications or services. Note that HTTP is stateless which means the server does not store
session information for individual flows; REST API calls retain this stateless functionality as well. This allows
for seamless REST operation across HTTP proxies and gateways.

2.2.1 Google Remote Procedure Call (gRPC) on IOS-XR using iosxr grpc

Google defined gRPC as gRPC Remote Procedure Call framework, borrowing the idea of recursive acronyms
popular in the open source world. The RPC concept is not a new one; Distributed Component Object Model
(DCOM) from Microsoft has long existed, among others. NETCONF and SOAP are other examples of RPC-
based APIs. At the time of this writing, gRPC is open-source and free to use.

gRPC solves a number of shortcomings of REST-based APIs (although gRPC does not exist for only this
purpose). For example, there is no formal machine definition of a REST API. Each API is custom-built
following REST architectural principles. API consumers must always read documents pertaining to the
specific API in order to determine its usage specifications. Furthermore, streaming operations (sending
a stream of messages in response to a client’s request, or vice versa) are very difficult as HTTP 1.1, the
specification upon which most REST-based APIs are built, does not support this. Instead, gRPC is based
on HTTP/2 which supports this functionality.

The gRPC framework also solves the time-consuming and expensive problem of writing client libraries. With
REST-based APIs, individual client libraries must be written in whatever language a developer needs for
gRPC API invocations. Using the Interface Definition Language (IDL), which is loosely analogous to YANG,
developers can identify both the service interface and the structure of the payload messages. Because IDL

Copyright 2021 Nicholas Russo http://njrusmc.net 93

http://njrusmc.net


follows a standard format (it’s a language after all), it can be compiled. The outputs from this compilation
process include client libraries for many different languages, such as C, C#, Java, and Python to name a
few.

Error reporting in gRPC is also improved when compared to REST-based APIs. Rather than relying on
generic HTTP status codes, gRPC has a formalized set of errors specific to API usage, which is better
suited to machine-based communications. To facilitate this communication technique, gRPC forms a single
TCP session with many API calls transported within; this allows multiple in-flight API calls concurrently.

Today, gRPC is supported on Cisco’s IOS-XR platform. To follow this demonstration, any Linux development
platform will work, assuming it has Python installed. Testing gRPC on IOS-XR is not particularly different
than other APIs, but requires many setup steps. Each one is covered briefly before the demonstration
begins. First, install the necessary underlying libraries needed to use gRPC. The “docopt” package helps
with using CLI commands and is used by the Cisco IOS-XR cli.py client.

[root@devbox ec2-user]# pip install grpcio docopt

Collecting grpcio

Downloading

[snip]

Collecting docopt

Downloading

[snip]

Next, install the Cisco IOS-XR specific libraries needed to communicate using gRPC. This could be bundled
into the previous step, but was separated in this document for cleanliness.

[root@devbox ec2-user]# pip install iosxr_grpc

Collecting iosxr_grpc

[snip]

Clone this useful gRPC client library, written by Karthik Kumaravel. It contains a number of wrapper func-
tions to simplify using gRPC for both production and learning purposes. Using the ls command, ensure the
ios-xr-grpc-python/ directory has files in it. This indicates a successful clone. More skilled developers
may skip this step and write custom Python code using the iosxr_grpc library directly.

[root@devbox ec2-user]# git clone \

> https://github.com/cisco-grpc-connection-libs/ios-xr-grpc-python.git

Cloning into 'ios-xr-grpc-python'...

remote: Counting objects: 419, done.

remote: Total 419 (delta 0), reused 0 (delta 0), pack-reused 419

Receiving objects: 100% (419/419), 99.68 KiB | 0 bytes/s, done.

Resolving deltas: 100% (219/219), done.

[root@devbox ec2-user]# ls ios-xr-grpc-python/

examples iosxr_grpc LICENSE README.md requirements.txt setup.py tests

To better understand how the data modeling works, clone the YANG models repository. To save download
time and disk space, one could specify a more targeted clone. Use ls again to ensure the clone operation
succeeded.

[root@devbox ec2-user]# git clone https://github.com/YangModels/yang.git

Cloning into 'yang'...

remote: Counting objects: 13479, done.

remote: Total 13479 (delta 0), reused 0 (delta 0), pack-reused 13478

Receiving objects: 100% (13479/13479), 22.93 MiB | 20.26 MiB/s, done.

Resolving deltas: 100% (9244/9244), done.

Checking out files: 100% (12393/12393), done.

[root@devbox ec2-user]# ls yang/

experimental ieee802-dot1ab-lldp.yang README.md setup.py [snip]

Copyright 2021 Nicholas Russo http://njrusmc.net 94

http://njrusmc.net


Install the pyang tool, which is a Python utility for managing YANG models. This same tool is used to
examine YANG models in conjunction with NETCONF on IOS-XE elsewhere in this book.

[root@devbox ec2-user]# pip install pyang

Collecting pyang

Downloading

[snip]

[root@devbox ec2-user]# which pyang

/bin/pyang

Using pyang, examine the YANG model on IOS-XR for OSPFv3, which is the topic of this demonstration.
This tree structure defines the JSON representation of the device configuration that gRPC requires. NET-
CONF uses XML encoding and gRPC uses JSON encoding, but both are the exact same representation of
the data structure.

[root@devbox ec2-user]# cd yang/vendor/cisco/xr/631/

[root@devbox 631]# pyang -f tree Cisco-IOS-XR-ipv6-ospfv3-cfg.yang

module: Cisco-IOS-XR-ipv6-ospfv3-cfg

+--rw ospfv3

+--rw processes

| +--rw process* [process-name]

| +--rw default-vrf

| | +--rw ldp-sync? boolean

| | +--rw prefix-suppression? boolean

| | +--rw spf-prefix-priority-disable? empty

| | +--rw area-addresses

| | | +--rw area-address* [address]

| | | | +--rw address inet:ipv4-address-no-zone

| | | | +--rw authentication

| | | | | +--rw enable? boolean

[snip]

Before continuing, ensure you have a functional IOS-XR platform running version 6.0 or later. Log into the
IOS-XR platform via SSH and enable gRPC. It’s very simple and only requires identifying a TCP port on
which to listen. Additionally, TLS-based security options are available but omitted for this demonstration.
This IOS-XR platform is an XRv9000 running in AWS on version 6.3.1.

RP/0/RP0/CPU0:XRv_gRPC#show version

Cisco IOS XR Software, Version 6.3.1

Copyright (c) 2013-2017 by Cisco Systems, Inc.

Build Information:

Built By : ahoang

Built On : Wed Sep 13 18:30:01 PDT 2017

Build Host : iox-ucs-028

Workspace : /auto/srcarchive11/production/6.3.1/xrv9k/workspace

Version : 6.3.1

Location : /opt/cisco/XR/packages/

cisco IOS-XRv 9000 () processor

System uptime is 21 minutes

RP/0/RP0/CPU0:XRv_gRPC#show running-config grpc

grpc

port 10033

!

Once enabled, check the gRPC status and statistics, respectively, to ensure it is running. The TCP port is
10033 and TLS is disabled for this test. The statistics do not show any gRPC activity yet. This makes sense
since no API calls have been executed.

Copyright 2021 Nicholas Russo http://njrusmc.net 95

http://njrusmc.net


RP/0/RP0/CPU0:XRv_gRPC#show grpc status

*************************show gRPC status**********************

---------------------------------------------------------------

transport : grpc

access-family : tcp4

TLS : disabled

trustpoint : NotSet

listening-port : 10033

max-request-per-user : 10

max-request-total : 128

vrf-socket-ns-path : global-vrf

_______________________________________________________________

*************************End of showing status*****************

RP/0/RP0/CPU0:XRv_gRPC#show grpc statistics

*************************show gRPC statistics******************

---------------------------------------------------------------

show-cmd-txt-request-recv : 0

show-cmd-txt-response-sent : 0

get-config-request-recv : 0

get-config-response-sent : 0

cli-config-request-recv : 0

cli-config-response-sent : 0

get-oper-request-recv : 0

get-oper-response-sent : 0

merge-config-request-recv : 0

merge-config-response-sent : 0

commit-replace-request-recv : 0

commit-replace-response-sent : 0

delete-config-request-recv : 0

delete-config-response-sent : 0

replace-config-request-recv : 0

replace-config-response-sent : 0

total-current-sessions : 0

commit-config-request-recv : 0

commit-config-response-sent : 0

action-json-request-recv : 0

action-json-response-sent : 0

_______________________________________________________________

*************************End of showing statistics*************

Manually configure some OSPFv3 parameters via CLI to start. Below is a configuration snippet from the
IOS-XRv platform running gRPC.

RP/0/RP0/CPU0:XRv_gRPC#show running-config router ospfv3

router ospfv3 42518

router-id 10.10.10.2

log adjacency changes detail

area 0

interface Loopback0

passive

!

interface GigabitEthernet0/0/0/0

cost 1000

network point-to-point

hello-interval 1

!

!

address-family ipv6 unicast

Copyright 2021 Nicholas Russo http://njrusmc.net 96

http://njrusmc.net


Navigate to the examples/ directory inside of the cloned IOS-XR gRPC client utility. The cli.py utility can
be run directly from the shell with a handful of CLI arguments to specify the username/password, TCP port,
and gRPC operation. Performing a get-config operation first will return the properly-structured JSON of
the entire configuration. Because it is so long, the author redirects this into a file for further processing. The
JSON shown below is also truncated for brevity.

[root@devbox ec2-user]# cd ios-xr-grpc-python/examples/

[root@devbox examples]# ./cli.py -i xrv_grpc -p 10033 -u root -pw grpctest \

> -r get-config | tee json/ospfv3.json

{

"data": {

"Cisco-IOS-XR-ip-static-cfg:router-static": {

"default-vrf": {

"address-family": {

"vrfipv4": {

"vrf-unicast": {

"vrf-prefixes": {

"vrf-prefix": [

Using the popular jq (JSON query) utility, one can pull out the OSPFv3 configuration from the file.

[root@devbox examples]# jq '.data."Cisco-IOS-XR-ipv6-ospfv3-cfg:ospfv3"' json/ospfv3.json

{

"processes": {

"process": [

{

"process-name": 42518,

"default-vrf": {

"router-id": "10.10.10.2",

"log-adjacency-changes": "detail",

"area-addresses": {

"area-area-id": [

{

"area-id": 0,

"enable": [

null

],

"interfaces": {

"interface": [

{

"interface-name": "Loopback0",

"enable": [

null

],

"passive": true

},

{

"interface-name": "GigabitEthernet0/0/0/0",

"enable": [

null

],

"cost": 1000,

"network": "point-to-point",

"hello-interval": 1

}

]

}

}

]

Copyright 2021 Nicholas Russo http://njrusmc.net 97

http://njrusmc.net


}

},

"af": {

"af-name": "ipv6",

"saf-name": "unicast"

},

"enable": [

null

]

}

]

}

}

Run the jq command again except redirect the output to a new file. This new file represents the configura-
tion updates to be pushed via gRPC.

[root@devbox examples]# jq '.data."Cisco-IOS-XR-ipv6-ospfv3-cfg:ospfv3"' \

> json/ospfv3.json >> json/merge.json

Using a text editor, manually update the merge.json file by adding the top-level key of “Cisco-IOS-XR-
ipv6-ospfv3-cfg:ospfv3” and changing some minor parameters. In the example below, the author updates
Gig0/0/0 cost, network type, and hello interval. Don’t forget the trailing } at the bottom of the file after adding
the top-level key discussed above or else the JSON data will be syntactically incorrect.

[root@devbox examples]# cat json/merge.json

{

"Cisco-IOS-XR-ipv6-ospfv3-cfg:ospfv3": {

"processes": {

"process": [

{

"process-name": 42518,

"default-vrf": {

"router-id": "10.10.10.2",

"log-adjacency-changes": "detail",

"area-addresses": {

"area-area-id": [

{

"area-id": 0,

"enable": [

null

],

"interfaces": {

"interface": [

{

"interface-name": "Loopback0",

"enable": [

null

],

"passive": true

},

{

"interface-name": "GigabitEthernet0/0/0/0",

"enable": [

null

],

"cost": 123,

"network": "broadcast",

"hello-interval": 17

Copyright 2021 Nicholas Russo http://njrusmc.net 98

http://njrusmc.net


}

]

}

}

]

}

},

"af": {

"af-name": "ipv6",

"saf-name": "unicast"

},

"enable": [

null

]

}

]

}

}

}

Use the cli.py utility again except with the merge-config option. Specify the merge.json file as the
configuration delta to merge with the existing configuration. This API call does not return any output, but
checking the return code indicates it succeeded.

[root@devbox examples]# ./cli.py -i xrv_grpc -p 10033 -u root -pw grpctest \

> -r merge-config --file json/merge.json

\begin{minted}{text}

[root@devbox examples]# echo #?

0

Log into the IOS-XR platform again and confirm via CLI that the configuration was updated.

RP/0/RP0/CPU0:XRv_gRPC#sh run router ospfv3

router ospfv3 42518

router-id 10.10.10.2

log adjacency changes detail

area 0

interface Loopback0

passive

!

interface GigabitEthernet0/0/0/0

cost 123

network broadcast

hello-interval 17

!

!

address-family ipv6 unicast

The gRPC statistics are updated as well. The first get-config request came from the devbox and the
response was sent from the router. The same transactional communication is true for merge-config.

RP/0/RP0/CPU0:XRv_gRPC#show grpc statistics

*************************show gRPC statistics******************

---------------------------------------------------------------

show-cmd-txt-request-recv : 0

show-cmd-txt-response-sent : 0

get-config-request-recv : 1

get-config-response-sent : 1

cli-config-request-recv : 0

cli-config-response-sent : 0

Copyright 2021 Nicholas Russo http://njrusmc.net 99

http://njrusmc.net


get-oper-request-recv : 0

get-oper-response-sent : 0

merge-config-request-recv : 1

merge-config-response-sent : 1

commit-replace-request-recv : 0

commit-replace-response-sent : 0

delete-config-request-recv : 0

delete-config-response-sent : 0

replace-config-request-recv : 0

replace-config-response-sent : 0

total-current-sessions : 0

commit-config-request-recv : 0

commit-config-response-sent : 0

action-json-request-recv : 0

action-json-response-sent : 0

_______________________________________________________________

*************************End of showing statistics*************

2.2.2 gRPC on IOS-XR using grpcio and Manual Compilation

The previous section introduced gRPC but masked much of the complexity within the iosxr_grpc package.
Sometimes, individual client libraries do not exist, and programmers must generate their own based on a
.proto service defintion file. As discussed earlier, gRPC differs from REST because it defines a clear set
of operations that are supported between client and server. Below is an example service definition file for
the Cisco IOS-XR router (v6.3.1). The gRPCConfigOper service describes the RPCs available to the client,
along with their arguments and return values. The arguments and return values are called “messages” and
are defined later in the file. Most of these objects are simple with only a few fields, such as “yangjson” or
“errors”. These proto files should be supplied by the vendor; in this case, check Cisco’s documentation for
your current IOS-XR version to find the corresponding protocol definition file. This section focuses less on
basic gRPC enablement and YANG models and more on the inner workings of gRPC itself.

Nicholass-MBP:grpc_xr nicholasrusso# cat xr.proto

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc CommitReplace(CommitReplaceArgs) returns (CommitReplaceReply) {};

rpc CommitConfig(CommitArgs) returns(CommitReply) {};

rpc ConfigDiscardChanges(DiscardChangesArgs) returns(DiscardChangesReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CreateSubs(CreateSubsArgs) returns(stream CreateSubsReply) {};

}

service gRPCExec {

rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};

rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

rpc ActionJSON(ActionJSONArgs) returns(stream ActionJSONReply) {};

}

message ConfigGetArgs {

int64 ReqId = 1;

string yangpathjson = 2;

}

Copyright 2021 Nicholas Russo http://njrusmc.net 100

http://njrusmc.net


message ConfigGetReply {

int64 ResReqId = 1;

string yangjson = 2;

string errors = 3;

}

message GetOperArgs {

int64 ReqId = 1;

string yangpathjson = 2;

}

message GetOperReply {

int64 ResReqId = 1;

string yangjson = 2;

string errors = 3;

}

message ConfigArgs {

int64 ReqId = 1;

string yangjson = 2;

}

message ConfigReply {

int64 ResReqId = 1;

string errors = 2;

}

message CliConfigArgs {

int64 ReqId = 1;

string cli = 2;

}

message CliConfigReply {

int64 ResReqId = 1;

string errors = 2;

}

message CommitReplaceArgs {

int64 ReqId = 1;

string cli = 2;

string yangjson = 3;

}

message CommitReplaceReply {

int64 ResReqId = 1;

string errors = 2;

}

message CommitMsg {

string label = 1;

string comment = 2;

}

enum CommitResult {

CHANGE = 0;

NO_CHANGE = 1;

FAIL = 2;

}

message CommitArgs {

CommitMsg msg = 1;

int64 ReqId = 2;

}

message CommitReply {

CommitResult result = 1;

int64 ResReqId = 2;

string errors = 3;

}

message DiscardChangesArgs {

int64 ReqId = 1;

Copyright 2021 Nicholas Russo http://njrusmc.net 101

http://njrusmc.net


}

message DiscardChangesReply {

int64 ResReqId = 1;

string errors = 2;

}

message ShowCmdArgs {

int64 ReqId = 1;

string cli = 2;

}

message ShowCmdTextReply {

int64 ResReqId = 1;

string output = 2;

string errors = 3;

}

message ShowCmdJSONReply {

int64 ResReqId = 1;

string jsonoutput = 2;

string errors = 3;

}

message CreateSubsArgs {

int64 ReqId = 1;

int64 encode = 2;

string subidstr = 3;

}

message CreateSubsReply {

int64 ResReqId = 1;

bytes data = 2;

string errors = 3;

}

message ActionJSONArgs {

int64 ReqId = 1;

string yangpathjson = 2;

}

message ActionJSONReply {

int64 ResReqId = 1;

string yangjson = 2;

string errors = 3;

}

To get started, we must install two gRPC-related packages which allow us to create the required Python
code from a gRPC .proto file.

Nicholass-MBP:grpc_xr nicholasrusso# pip install grpcio grpcio-tools

Collecting grpcio

Collecting grpcio-tools

(snip)

Successfully installed grpcio-1.34.0 grpcio-tools-1.34.0

With the proper tools installed, we must “compile” the xr.proto file which yields two output files. One file is
xr_pb2.py which defines the request and response objects, such as ConfigArgs and ConfigReply. These
objects represent the input and output data structures used by gRPC for a specific platform, providing
a clear and well-defined contract of communications. The second file is xr_pb2_grpc.py which defines
gRPC client and server interfaces. In our case, the server is the IOS-XR device, so we have little use for it
at present, but it might be useful for CI/CD testing or offline development. The compilation process is only
one command, but I’ve created a small Bash script to summarize the process and the artifacts.

Nicholass-MBP:grpc_xr nicholasrusso# cat compile.sh

#!/bin/bash

# Compiles the protobuf definition and generates two Python files

# 1. xr_pb2.py: generated request and response classes

Copyright 2021 Nicholas Russo http://njrusmc.net 102

http://njrusmc.net


# 2. xr_pb2_grpc.py: generated client and server classes

python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. xr.proto

Nicholass-MBP:grpc_xr nicholasrusso# ./compile.sh

Nicholass-MBP:grpc_xr nicholasrusso#

After compilation, the two Python files are present alongside the original protobuf-defined service file. We
can include these in our Python scripts.

Nicholass-MBP:grpc_xr nicholasrusso# ls -1 xr*

xr.proto

xr_pb2.py

xr_pb2_grpc.py

Let’s quickly explore the attributes and methods in each Python module. From the Python REPL, we
import xr_pb2 to view the request and response objects available. Some unrelated items have been
omitted for brevity.

Nicholass-MBP:grpc_xr nicholasrusso# python

>>> import xr_pb2

>>> dir(xr_pb2)

['ActionJSONArgs', 'ActionJSONReply', 'CliConfigArgs', 'CliConfigReply',

'CommitArgs', 'CommitMsg', 'CommitReplaceArgs', 'CommitReplaceReply',

'CommitReply', 'CommitResult', 'ConfigArgs', 'ConfigGetArgs',

'ConfigGetReply', 'ConfigReply', 'CreateSubsArgs', 'CreateSubsReply',

'DiscardChangesArgs', 'DiscardChangesReply', 'GetOperArgs', 'GetOperReply',

'ShowCmdArgs', 'ShowCmdJSONReply', 'ShowCmdTextReply', (snip)]

Repeat the process for the second module using import xr_pb2_grpc. This one contains the client and
service interface objects. For our demo, the gRPCConfigOperStub feature is most important to us.

Nicholass-MBP:grpc_xr nicholasrusso# python

>>> import xr_pb2_grpc

>>> dir(xr_pb2_grpc)

['gRPCConfigOper', 'gRPCConfigOperServicer', 'gRPCConfigOperStub',

'gRPCExec', 'gRPCExecServicer', 'gRPCExecStub', (snip)]

Next, let’s create a simple Python class that exposes a subset of the gRPC functionality. We’ll limit it to
the CRUD operations, allowing us to perform a variety of basic configuration management tasks. The
__enter__() and __exit__() methods allow instances of this class to act as context managers, simplifying
the process of connecting and disconnecting. As seen earlier in our review of xr.proto, the GetConfig

RPC returns a stream of ConfigGetReply objects, making it slightly different than the other RPCs. The
others all consume ConfigArgs and return ConfigReply objects. Note that while gRPC helps formalize the
client/service communications, The IOS-XR RPCs still leverage YANG-modeled data, much like NETCONF
and RESTCONF. This is best handled using Python structures (dictionaries, lists, etc.) and converting
them to strings as required by the gRPC service definition.

Nicholass-MBP:grpc_xr nicholasrusso# cat cisco_xr_grpc.py

#!/usr/bin/env python

"""

Author: Nick Russo

Purpose: Define a simple Cisco IOS-XR gRPC interface using OOP.

"""

import json

import grpc

import xr_pb2

import xr_pb2_grpc

Copyright 2021 Nicholas Russo http://njrusmc.net 103

http://njrusmc.net


class CiscoXRgRPC:

"""

Define a simple Cisco IOS-XR gRPC interface using OOP.

"""

def __init__(self, host, port, username, password):

"""

Create a new object with the specific hostname/IP, gRPC port,

username, and password.

"""

self.creds = [("username", username), ("password", password)]

self.host = host

self.port = port

def __enter__(self):

"""

Establish a gRPC connection to the device and instantiate the

stub object from which RPCs can be issued.

"""

self.channel = grpc.insecure_channel(f"{self.host}:{self.port}")

self.stub = xr_pb2_grpc.gRPCConfigOperStub(self.channel)

return self

def __exit__(self, type, value, traceback):

"""

Gracefully close the gRPC connection.

"""

self.channel.close()

def _make_config_args(self, data):

"""

Internal-only method to create a ConfigArgs object based

on a YANG-modeled Python dictionary.

"""

return xr_pb2.ConfigArgs(yangjson=json.dumps(data))

def get_config(self, yangpathjson_dict):

"""

Issue a GetConfig RPC and transform result into a list of

ConfigGetReply objects for each consumption.

"""

responses = self.stub.GetConfig(

xr_pb2.ConfigGetArgs(yangpathjson=json.dumps(yangpathjson_dict)),

metadata=self.creds,

)

return [json.loads(resp.yangjson) for resp in responses if resp.yangjson]

def merge_config(self, yangjson_dict):

"""

Issue a MergeConfig RPC based on the YANG data supplied.

"""

response = self.stub.MergeConfig(

self._make_config_args(yangjson_dict), metadata=self.creds

)

return response

def replace_config(self, yangjson_dict):

"""

Issue a ReplaceConfig RPC based on the YANG data supplied.

Copyright 2021 Nicholas Russo http://njrusmc.net 104

http://njrusmc.net


"""

response = self.stub.ReplaceConfig(

self._make_config_args(yangjson_dict), metadata=self.creds

)

return response

def delete_config(self, yangjson_dict):

"""

Issue a DeleteConfig RPC based on the YANG data supplied.

"""

response = self.stub.DeleteConfig(

self._make_config_args(yangjson_dict), metadata=self.creds

)

return response

Next, let’s create a test script that leverages this new class. This script behaves like a quick-and-dirty CLI
tool for testing, providing options for GetConfig, MergeConfig, ReplaceConfig, and DeleteConfig operations.
The xr1 device is available in a free, publicly-accessible sandbox hosted by Cisco DevNet. Readers can
replace the credential information as required to suit their test environments.

Nicholass-MBP:grpc_xr nicholasrusso# cat grpc_config.py

#!/usr/bin/env python

"""

Author: Nick Russo

Purpose: Test the CiscoXRgRPC class using the IOS-XR DevNet sandbox.

"""

import argparse

import json

from cisco_xr_grpc import CiscoXRgRPC

def main(args):

"""

CiscoXRgRPC tests begin here.

"""

# Define connectivity information for Cisco DevNet sandbox XR1

xr1 = {

"host": "10.10.20.70",

"port": 57021,

"username": "admin",

"password": "admin",

}

# Open a new connection to XR1 by unpacking dict into kwargs

with CiscoXRgRPC(**xr1) as conn:

# Issue GetConfig RPC

if args.getconfig:

vrf_path = {"Cisco-IOS-XR-infra-rsi-cfg:vrfs": [None]}

response = conn.get_config(yangpathjson_dict=vrf_path)

# Response is a list of ConfigGetReply objects

for resp in response:

for vrf in resp["Cisco-IOS-XR-infra-rsi-cfg:vrfs"]["vrf"]:

# Print VRF summary output for simple confirmation. Example:

# VRF name: A / RTI 1:1 RTE 1:1

Copyright 2021 Nicholas Russo http://njrusmc.net 105

http://njrusmc.net


print(f"VRF name: {vrf['vrf-name']} /", end="")

bgp = vrf["afs"]["af"][0]["Cisco-IOS-XR-ipv4-bgp-cfg:bgp"]

rti = bgp["import-route-targets"]["route-targets"]

rte = bgp["export-route-targets"]["route-targets"]

ihalf = rti["route-target"][0]["as-or-four-byte-as"][0]

ehalf = rte["route-target"][0]["as-or-four-byte-as"][0]

print(f" RTI {ihalf['as']}:{ihalf['as-index']}", end="")

print(f" RTE {ehalf['as']}:{ehalf['as-index']}")

# Issue MergeConfig RPC

if args.mergeconfig:

with open("vrf_b.json", "r") as handle:

vrf_b = json.load(handle)

response = conn.merge_config(yangjson_dict=vrf_b)

print(f"Errors: {response.errors if response.errors else 'N/A'}")

# Issue ReplaceConfig RPC

if args.replaceconfig:

with open("vrf_b.json", "r") as handle:

vrf_b = json.load(handle)

response = conn.replace_config(yangjson_dict=vrf_b)

print(f"Errors: {response.errors if response.errors else 'N/A'}")

# Issue DeleteConfig RPC

if args.deleteconfig:

vrf_b = {

"Cisco-IOS-XR-infra-rsi-cfg:vrfs": {"vrf": [{"vrf-name": "B"}]}

}

response = conn.delete_config(yangjson_dict=vrf_b)

print(f"Errors: {response.errors if response.errors else 'N/A'}")

if __name__ == "__main__":

# Define CLI arguments for Get, Merge, Replace, and Delete operations

parser = argparse.ArgumentParser()

parser.add_argument("-g", "--getconfig", action="store_true")

parser.add_argument("-m", "--mergeconfig", action="store_true")

parser.add_argument("-r", "--replaceconfig", action="store_true")

parser.add_argument("-d", "--deleteconfig", action="store_true")

# Pass arguments into the main() function for evaluation

main(parser.parse_args())

To begin, we’ll add VRF A to the router manually using SSH. This will give us something to collect using
GetConfig. Keeping things simple, each VRF in this demo will only use a single AFI and single pair of
route-targets.

RP/0/RP0/CPU0:r1#show running-config vrf

vrf A

address-family ipv4 unicast

import route-target

1:1

export route-target

1:1

Running the script using the -g option, this instructs Python to connect using gRPC and issue the GetConfig

RPC. The script hardcodes the YANG path to {"Cisco-IOS-XR-infra-rsi-cfg:vrfs": [None]} which
collects all VRFs on the device. Each VRF is compressed to a single line of over-simplified output for demo
purposes.

Copyright 2021 Nicholas Russo http://njrusmc.net 106

http://njrusmc.net


Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -g

VRF name: A / RTI 1:1 RTE 1:1

Next, let’s add VRF B, a new VRF defined in a JSON file. This structure follows the IOS-XR “native”
YANG model, which is extremely hierarchical. The VRF imports and exports route-target 2:2 with no other
attributes set. You can review the IOS-XR YANG models for your current software version here.

Nicholass-MBP:grpc_xr nicholasrusso# cat vrf_b.json

{

"Cisco-IOS-XR-infra-rsi-cfg:vrfs": {

"vrf": [

{

"vrf-name": "B",

"afs": {

"af": [

{

"af-name": "ipv4",

"saf-name": "unicast",

"topology-name": "default",

"Cisco-IOS-XR-ipv4-bgp-cfg:bgp": {

"import-route-targets": {

"route-targets": {

"route-target": [

{

"type": "as",

"as-or-four-byte-as": [

{

"as-xx": 0,

"as": 2,

"as-index": 2,

"stitching-rt": 0

}

]

}

]

}

},

"export-route-targets": {

"route-targets": {

"route-target": [

{

"type": "as",

"as-or-four-byte-as": [

{

"as-xx": 0,

"as": 2,

"as-index": 2,

"stitching-rt": 0

}

]

}

]

}

}

}

}

]

}

}

Copyright 2021 Nicholas Russo http://njrusmc.net 107

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
http://njrusmc.net


]

}

}

The script is hardcoded to load the JSON data from this file into a Python dictionary. The MergeConfig

RPC includes this data as an argument, effectively adding it to the configuration. Per the services definition,
the ConfigReply response message only contains an “errors” attribute (not including the ResReqId field).
When no errors occur, it is set to the empty string, and the script prints “N/A” in that case. Otherwise, the
script displays the error string. To confirm that the merge succeeded, we’ll run another GetConfig RPC
immediately afterwards to confirm VRFs A and B exist.

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -m

Errors: N/A

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -g

VRF name: A / RTI 1:1 RTE 1:1

VRF name: B / RTI 2:2 RTE 2:2

The ReplaceConfig operation will overwrite the existing VRFs with whatever is specified in the supplied
ConfigArgs message. We can delete all VRFs other than VRF B using this approach when we supply the
same JSON input file. After the replacement, only VRF B remains.

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -r

Errors: N/A

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -g

VRF name: B / RTI 2:2 RTE 2:2

Last, we can delete VRF B by specifying it by name in a DeleteConfig RPC. It is not necessary to specify
the entire VRF B payload. Now, there are no VRFs remaining as evidenced by an lack of GetConfig
responses.

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -d

Errors: N/A

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -g

Nicholass-MBP:grpc_xr nicholasrusso#

Note that if you try to delete a nonexistent object, gRPC will raise an error, which is in JSON format. In this
example, VRF B has already been deleted and so cannot be deleted again. The error is clearly formatted
as JSON and could be programmatically validated by the script in the future.

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_config.py -d

Errors: {

"cisco-grpc:errors": {

"error": [

{

"error-type": "application",

"error-tag": "data-missing",

"error-severity": "error",

"error-path": "Cisco-IOS-XR-infra-rsi-cfg:ns1:vrfs/ns1:vrf[vrf-name='B']"

}

]

}

}

In addition to configuration management, we can also collect streaming telemetry using the CreateSubs

RPC. This leverages gRPC in a dial-in design whereby the router dynamically accepts connections from
collectors. On the router, the author has pre-configured a sample telemetry subscription which collects
memory statistics. This periodic subscription will yield a new measurement every 10,000 milliseconds (10
seconds).

Copyright 2021 Nicholas Russo http://njrusmc.net 108

http://njrusmc.net


RP/0/RP0/CPU0:r1#show running-config telemetry model-driven

telemetry model-driven

sensor-group mem

sensor-path Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary

subscription sub1

sensor-group-id mem sample-interval 10000

We’ll update our cisco_xr_grpc.py module with a new Encode class to enumerate the variety of telemetry
formats supported by IOS-XR. These formats are discussed more later. Additionally, we’ll create a method
to create a new subscription using the proper RPC and proper arguments. The create_subs() method will
block indefinitely or until the connection is broken, constantly listening for telemetry updates.

Nicholass-MBP:grpc_xr nicholasrusso# cat cisco_xr_grpc.py

from enum import IntEnum

class Encode(IntEnum):

"""

Enumerated encoding types for streaming telemetry.

This isn't well documented today ...

"""

TEST = 1

GPB = 2

KVGPB = 3

JSON = 4

class CiscoXRgRPC:

# snip; other methods omitted for brevity

def create_subs(self, sub_id, encode):

"""

Subscribe to a telemetry topic using a specific encoding

(see Encode class for options) and unique subscription ID.

Returns a generator object which is built as messages arrive.

"""

sub_args = xr_pb2.CreateSubsArgs(ReqId=1, encode=encode, subidstr=sub_id)

stream = self.stub.CreateSubs(sub_args, metadata=self.creds)

for segment in stream:

yield segment

Next, we’ll create a new script to test the telemetry subscriptions which is separate from the configuration
management script. We can continue to use the xr1 device, except this time, we’ll establish a telemetry
subscription using JSON encoding for readability.

Nicholass-MBP:grpc_xr nicholasrusso# cat grpc_telemetry.py

#!/usr/bin/env python

"""

Author: Nick Russo

Purpose: Test the CiscoXRgRPC telemetry subscription functionality.

"""

from cisco_xr_grpc import CiscoXRgRPC, Encode

def main():

"""

Test the CiscoXRgRPC telemetry subscription functionality.

"""

Copyright 2021 Nicholas Russo http://njrusmc.net 109

http://njrusmc.net


# Define connectivity information for Cisco DevNet sandbox XR1

xr1 = {

"host": "10.10.20.70",

"port": 57021,

"username": "admin",

"password": "admin",

}

# Open a new connection to XR1 by unpacking dict into kwargs

with CiscoXRgRPC(**xr1) as conn:

# Collect telemetry responses using JSON for readability

responses = conn.create_subs("sub1", encode=Encode.JSON)

for response in responses:

print(response)

if __name__ == "__main__":

main()

Running the script for at least 20 seconds, you’ll see some telemetry metrics collected and displayed as a
giant JSON structure enclosed in a string. In a real application, one might parse this information for further
analysis, ultimately displaying it on a dashboard.

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_telemetry.py

ResReqId: 3

data: "{"node_id_str":"r1","subscription_id_str":"sub1","encoding_path":

"Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary","collection_id":3,

"collection_start_time":1608911695372,"msg_timestamp":1608911695387,"data_json":

[{"timestamp":1608911695386,"keys":{"node-name":"0/RP0/CPU0"},"content":

{"page-size":4096,"ram-memory":5368709120,"free-physical-memory":640364544,

"system-ram-memory":5368709120,"free-application-memory":726900736,

"image-memory":4194304,"boot-ram-size":0,"reserved-memory":0,"io-memory":0,

"flash-system":0}},{"timestamp":1608911695395,"keys":{"node-name":"0/0/CPU0"},

"content":{"page-size":4096,"ram-memory":8589934592,"free-physical-memory":

6210064384,"system-ram-memory":8589934592,"free-application-memory":6296834048,

"image-memory":4194304,"boot-ram-size":0,"reserved-memory":0,"io-memory":0,

"flash-system":0}}],"collection_end_time":1608911695399}"

ResReqId: 3

data: "{"node_id_str":"r1","subscription_id_str":"sub1","encoding_path":

"Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary","collection_id":4,

"collection_start_time":1608911705405,"msg_timestamp":1608911705437,"data_json":

[{"timestamp":1608911705437,"keys":{"node-name":"0/RP0/CPU0"},"content":

{"page-size":4096,"ram-memory":5368709120,"free-physical-memory":634781696,

"system-ram-memory":5368709120,"free-application-memory":721137664,

"image-memory":4194304,"boot-ram-size":0,"reserved-memory":0,"io-memory":0,

"flash-system":0}},{"timestamp":1608911705442,"keys":{"node-name":"0/0/CPU0"},

"content":{"page-size":4096,"ram-memory":8589934592,"free-physical-memory":

6210449408,"system-ram-memory":8589934592,"free-application-memory":6296985600,

"image-memory":4194304,"boot-ram-size":0,"reserved-memory":0,"io-memory":0,

"flash-system":0}}],"collection_end_time":1608911705443}"

Before breaking the connection with Control-C, you can verify that the session is active by running the
following command on the IOS-XR device. This reveals the current dial-in connection information for confir-
mation.

RP/0/RP0/CPU0:r1#show telemetry model-driven subscription

Subscription: sub1 State: ACTIVE

-------------

Sensor groups:

Copyright 2021 Nicholas Russo http://njrusmc.net 110

http://njrusmc.net


Id Interval(ms) State

mem 10000 Resolved

Destination Groups:

Id Encoding Transport State Port Vrf IP

DialIn_1002 json dialin Active 37588 192.168.122.1

No TLS

For completeness, here are the outputs from the remaining formats. The “test” option is for connectivity
verification only and is effectively a null/empty encoding. Google Protocol Buffers, or GPB, is a compact,
binary-only format that is very high performance but is generally not human readable. Key/value GPB is a
hybrid of GBP and JSON, allowing keys to be human readable but dictionaries are encoded in binary for
improved performance. As seen earlier, JSON is the easiest to read but is the worst performing given that
it is text-based and heavyweight in terms of size.

### Using test encoding

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_telemetry.py

(no output)

### Using GPB encoding

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_telemetry.py

ResReqId: 5

data:

"\n\002r1\032\004sub12<Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary:

\n2015-11-09@\010H\262\315\360\325\351.P\262\315\360\325\351.h\302\315\360\325\351.b

\224\001\nI\010\271\315\360\325\351.R\014\n\n0/RP0/CPU0Z2\220\003\200

\230\003\200\200\200\200\024\240\003\200\200\366\272\002\250\003\200\200\200\200

\024\260\003\200\340\227\344\002\270\003\200\200\200\002\300\003\000\310\003\000

\320\003\000\330\003\000\nG\010\300\315\360\325\351.R\n\n\0100/0/CPU0Z2\220\003

\200 \230\003\200\200\200\200 \240\003\200\200\236\221\027\250\003\200\200\200\200

\260\003\200\340\277\272\027\270\003\200\200\200\002\300\003\000\310\003

\000\320\003\000\330\003\000"

### Using KV-GPB encoding

Nicholass-MBP:grpc_xr nicholasrusso# python grpc_telemetry.py

ResReqId: 6

data:

"\n\002r1\032\004sub12<Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary:

\n2015-11-09@\tH\370\223\361\325\351.P\370\223\361\325\351.Z\220\002\010\203\224\361

\325\351.z\037\022\004keysz\027\022\tnode-name*\n0/RP0/CPU0z\345\001\022\007contentz

\016\022\tpage-size8\200z\022\022\nram-memory@\200\200\200\200\024z\034\022\024

free-physical-memory@\200\300\347\272\002z\031\022\021system-ram-memory@

\200\200\200\200\024z\037\022\027free-application-memory@\200\240\211\344\002z

\023\022\014image-memory@\200\200\200\002z\021\022\rboot-ram-size@\000z\023\022

\017reserved-memory@\000z\r\022\tio-memory@\000z\020\022\014flash-system@\000Z\216

\002\010\206\224\361\325\351.z\035\022\004keysz\025\022\tnode-name*\0100/0/CPU0z\345

\001\022\007contentz\016\022\tpage-size8\200 z\022\022\nram-memory@\200\200\200\200z

\034\022\024free-physical-memory@\200\300\246\221\027z\031\022\021system-ram-memory@

\200\200\200\200z\037\022\027free-application-memory@\200\240\310\272\027z\023\022

\014image-memory@\200\200\200\002z\021\022\rboot-ram-size@\000z\023\022

\017reserved-memory@\000z\r\022\tio-memory@\000z\020\022\014flash-system@\000h

\210\224\361\325\351."

Feel free to explore these scripts or expand upon them to suit your needs.

2.2.3 gRPC Network Management Interface (gNMI) on IOS-XR using gNMIc

In general, gRPC service definition files are application or platform-specific. The files are individually com-
piled and generate specific Python (or whatever language) output files for programmatic access. As it

Copyright 2021 Nicholas Russo http://njrusmc.net 111

http://njrusmc.net


relates to networking, however, there is only a small set of generic actions that are relevant. Using gNMI
(also developed by Google) simplifies this process as it defines only four actions:

1. Identify gNMI-supported features (Capabilities RPC)

2. Read network configuration and operational data (Get RPC)

3. Modify network configuration (Set RPC)

4. Subscribe to a telemetry topic (Subscribe RPC)

This standardized RPC list unifies and simplifies access to network devices across many vendors and fea-
ture sets. For reference, you can review the gNMI service definition file and main reference documentation.

Boiling down the proto file to just the core gNMI RPCs, we see four:

service gNMI {

rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);

rpc Get(GetRequest) returns (GetResponse);

rpc Set(SetRequest) returns (SetResponse);

rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);

}

Rather than go through the same grpcio compilation process using the gNMI .proto file, we’ll use a
popular CLI utility named gNMIc (using the gnmic shell command) to interactively communicate with an
IOS-XR device which must be running version 6.5.1 or newer. According to the documentation, let’s begin
by installing gnmic with a single command shown below. The output also displays the current version as
well as relevant documentation URLs.

Nicholass-MBP:gnmi_xr nicholasrusso# curl -sL \

https://github.com/karimra/gnmic/raw/master/install.sh | sudo bash

Downloading https://github.com/karimra/gnmic/releases/download/(snip)

Preparing to install gnmic 0.6.0 into /usr/local/bin

gnmic installed into /usr/local/bin/gnmic

version : 0.6.0

commit : 6c3bab3

date : 2020-12-14T15:13:54Z

gitURL : https://github.com/karimra/gnmic

docs : https://gnmic.kmrd.dev

Like most interactive CLI tools, we’ll need to specify basic connectivity parameters with each invocation.
gnmic supports a variety of command-line arguments, some of which are shown below.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic \

--address xrgnmi.njrusmc.net:57400 \

--username admin \

--password Cisco123 \

--insecure \

--encoding json_ietf \

--log-file "/tmp/gnmic.log" \

<command>

We can avoid the extra typing by creating a configuration file. gnmic looks for a YAML (or JSON or TOML)
file in the user’s home directory named gnmic.yml. The configuration file used for this demo is shown below.

Nicholass-MBP:gnmi_xr nicholasrusso# cat ~/gnmic.yml

---

address: "xrgnmi.njrusmc.net:57400"

username: "admin"

password: "Cisco123"

insecure: true

encoding: "json_ietf"

Copyright 2021 Nicholas Russo http://njrusmc.net 112

https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://gnmic.kmrd.dev
http://njrusmc.net


log-file: "/tmp/gnmic.log"

...

First, let’s test the Capabilities RPC. This RPC does not require any arguments, so we’ll keep it simple.
This returns all of the YANG models supported via gNMI, which is a very long list. It also includes the
supported encodings. Note that the Cisco-IOS-XR-infra-rsi-cfg YANG model is explicitly supported,
which can be used to manage IOS-XR VRF instances. Notice that gNMI is versioned and the device
announce its version in response to the Capabilities RPC.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic capabilities

Capabilities Response:

gNMI version: 0.4.0

supported models:

- Cisco-IOS-XR-mpls-io-oper, Cisco Systems, Inc., 2017-05-18

- Cisco-IOS-XR-mpls-io-oper-sub1, Cisco Systems, Inc., 2017-05-18

- Cisco-IOS-XR-infra-tc-oper, Cisco Systems, Inc., 2015-11-09

- Cisco-IOS-XR-infra-tc-oper-sub1, Cisco Systems, Inc., 2015-11-09

(snip)

- Cisco-IOS-XR-infra-rsi-cfg, Cisco Systems, Inc., 2017-05-01

(snip)

- Cisco-IOS-XR-sysadmin-show-trace-cm, Cisco Systems, Inc., 2017-04-12

- Cisco-IOS-XR-sysadmin-fpd-infra-cli-fpdserv-ctrace, Cisco Systems, Inc., 2017-05-01

supported encodings:

- JSON_IETF

- ASCII

Next, we can issue a Get RPC to collect the VRFs already configured. Like the previous section, VRF A
has been configured as follows:

RP/0/RP0/CPU0:r1#show running-config vrf

vrf A

address-family ipv4 unicast

import route-target

1:1

export route-target

1:1

To send a Get RPC, we must specify at least one YANG path, expression in XPATH format, to query. We’ll
use the same VRF path from the gRPC example. Rather than extract only specific pieces of the output,
the full return value is included below. A few irrelevant fields were deleted for brevity and gnmic defaults to
using JSON as an output format.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic get \

--path "Cisco-IOS-XR-infra-rsi-cfg:vrfs"

Get Response:

[

{

"timestamp": 1608946038505033147,

"time": "2020-12-25T20:27:18.505033147-05:00",

"updates": [

{

"Path": "Cisco-IOS-XR-infra-rsi-cfg:vrfs",

"values": {

"vrfs": {

"vrf": [

{

"afs": {

"af": [

{

"Cisco-IOS-XR-ipv4-bgp-cfg:bgp": {

Copyright 2021 Nicholas Russo http://njrusmc.net 113

http://njrusmc.net


"export-route-targets": {

"route-targets": {

"route-target": [

{

"as-or-four-byte-as": [

{

"as": 1,

"as-index": 1

}

]

}

]

}

},

"import-route-targets": {

"route-targets": {

"route-target": [

{

"as-or-four-byte-as": [

{

"as": 1,

"as-index": 1

}

]

}

]

}

}

},

"af-name": "ipv4",

"saf-name": "unicast",

"topology-name": "default"

}

]

},

"vrf-name": "A"

}

]

}

}

}

]

}

]

To add an new VRF from a file, we’ll prepare a Set RPC. Since this operation is used for configuration
merging/updating, replacing, and deleting, gNMIc provides explicit options for each. The “update” operation
will add the new VRF B which uses import and export route-target of 2:2. The exact payload has changed a
bit as the “Cisco-IOS-XR-infra-rsi-cfg:vrfs” top-level key was removed since that string is explicitly specified
in the path parameter.

Nicholass-MBP:gnmi_xr nicholasrusso# cat vrf_b.json

{

"vrf": [

{

"vrf-name": "B",

"afs": {

"af": [

{

Copyright 2021 Nicholas Russo http://njrusmc.net 114

http://njrusmc.net


"af-name": "ipv4",

"saf-name": "unicast",

"topology-name": "default",

"Cisco-IOS-XR-ipv4-bgp-cfg:bgp": {

"import-route-targets": {

"route-targets": {

"route-target": [

{

"type": "as",

"as-or-four-byte-as": [

{

"as-xx": 0,

"as": 2,

"as-index": 2,

"stitching-rt": 0

}

]

}

]

}

},

"export-route-targets": {

"route-targets": {

"route-target": [

{

"type": "as",

"as-or-four-byte-as": [

{

"as-xx": 0,

"as": 2,

"as-index": 2,

"stitching-rt": 0

}

]

}

]

}

}

}

}

]

}

}

]

}

With the JSON file prepared (note that gnmic also supports YAML in this context), we can issue the Set

RPC. gNMIc can read from the file automatically, making it easy to transfer large payloads.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic set \

--update-path "Cisco-IOS-XR-infra-rsi-cfg:vrfs" --update-file vrf_b.json

Set Response:

{

"timestamp": 1608946522461572145,

"time": "2020-12-25T20:35:22.461572145-05:00",

"results": [

{

"operation": "UPDATE",

"path": "Cisco-IOS-XR-infra-rsi-cfg:vrfs"

Copyright 2021 Nicholas Russo http://njrusmc.net 115

http://njrusmc.net


}

]

}

The response indicates that an “UPDATE” operation occurred, which implies there should be two VRFs on
the device. Let’s verify it using another Get RPC combined with egrep with a regex for brevity.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic get \

--path "Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf" | egrep 'as-index|vrf-name'

Get Response:

"as-index": 1,

"as-index": 1,

"vrf-name": "A"

"as-index": 2,

"as-index": 2,

"vrf-name": "B"

Next, we can use the Set RPC to replace the current VRF list with only VRF B by changing the options from
“update” to “replace”. A follow-up Get RPC confirms that only VRF B remains.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic set \

--replace-path "Cisco-IOS-XR-infra-rsi-cfg:vrfs" --replace-file vrf_b.json

Set Response:

{

"timestamp": 1608947077037654967,

"time": "2020-12-25T20:44:37.037654967-05:00",

"results": [

{

"operation": "REPLACE",

"path": "Cisco-IOS-XR-infra-rsi-cfg:vrfs"

}

]

}

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic get \

--path "Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf" | egrep 'as-index|vrf-name'

Get Response:

"as-index": 2,

"as-index": 2,

"vrf-name": "B"

It’s worth taking a short detour to examine a gNMIc log entry to see how the Set RPC works. Each RPC can
contain multiple paths, but also multiple concurrent operations of different types. The log entry has been
expanded over multiple lines for readability, and you’ll see a delete list, a replace list, and an update list.
This particular operation was the most recent Set RPC which contained a single configuration replacement
path.

Nicholass-MBP:gnmi_xr nicholasrusso# grep SetRequest /tmp/gnmic.log

gnmic 2020/12/25 20:44:36.350321 sending gNMI SetRequest:

prefix='<nil>',

delete='[]',

replace='[path:{origin:"Cisco-IOS-XR-infra-rsi-cfg" elem:{name:"vrfs"}}

val:{json_ietf_val:"(snip; JSON data loaded from file)"}]',

update='[]',

extension='[]'

to xrgnmi.njrusmc.net:57400

To clean up, we’ll issue a final Set RPC to delete VRF B. It’s important to escape the quotes around the
B, the YANG key in the vrf list. Failure to do so (assuming the value is a string like “B”) will result in
JSON lexical errors in the gNMIc log file. These errors appear specific to IOS-XR and are not a behavior of

Copyright 2021 Nicholas Russo http://njrusmc.net 116

http://njrusmc.net


gnmic or gNMI in general. Additionally, the Get RPC does not return any VRFs since all of them have been
deleted.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic set

\ --delete /Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf[vrf-name=\"B\"]

Set Response:

{

"timestamp": 1608949839770079703,

"time": "2020-12-25T21:30:39.770079703-05:00",

"results": [

{

"operation": "DELETE",

"path": "Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf[vrf-name=\"B\"]"

}

]

}

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic get \

--path "Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf"

Get Response:

[

{

"timestamp": 1608950007851961061,

"time": "2020-12-25T21:33:27.851961061-05:00",

"updates": [

{

"Path": "Cisco-IOS-XR-infra-rsi-cfg:vrfs/vrf",

"values": {

"vrfs/vrf": null

}

}

]

}

]

Last, we can collect network telemetry data using a Subscribe RPC. gNMI-based telemetry subscrip-
tions on IOS-XR only support “PROTO” encoding, so we’ll need to adjust this setting using the global flag
--encoding to override our ~/gnmic.yml default configuration file.

gnmic 2020/12/25 21:38:01.931052 target 'xrgnmi.njrusmc.net:57400',

subscription default-1608950271 rcv error: rpc error: code = Unknown

desc = GNMI Subscribe only supports PROTO encoding.

Several other RPC-specific options are useful to constrain the operation of the subscription. Note that these
gNMI subscriptions did not require any pre-configuration on IOS-XR, which seemed to be required for the
Cisco-specific gRPC service definition.

Nicholass-MBP:gnmi_xr nicholasrusso# gnmic sub --encoding PROTO \

--path "Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary" \

--mode STREAM \

--stream-mode SAMPLE \

--sample-interval 10s

{

"source": "xrgnmi.njrusmc.net:57400",

"subscription-name": "default-1608951157",

"timestamp": 1608951167365000000,

"time": "2020-12-25T21:52:47.365-05:00",

"prefix": "Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node[node-name=0]/summary",

"updates": [

{

Copyright 2021 Nicholas Russo http://njrusmc.net 117

http://njrusmc.net


"Path": "page-size",

"values": {

"page-size": 4096

}

},

{

"Path": "ram-memory",

"values": {

"ram-memory": 15032385536

}

},

{

"Path": "free-physical-memory",

"values": {

"free-physical-memory": 10985316352

}

},

{

"Path": "system-ram-memory",

"values": {

"system-ram-memory": 15032385536

}

},

{

"Path": "free-application-memory",

"values": {

"free-application-memory": 11347812352

}

},

{

"Path": "image-memory",

"values": {

"image-memory": 4194304

}

},

{

"Path": "boot-ram-size",

"values": {

"boot-ram-size": 0

}

},

{

"Path": "reserved-memory",

"values": {

"reserved-memory": 0

}

},

{

"Path": "io-memory",

"values": {

"io-memory": 0

}

},

{

"Path": "flash-system",

"values": {

"flash-system": 0

}

}

Copyright 2021 Nicholas Russo http://njrusmc.net 118

http://njrusmc.net


]

}

{

"source": "xrgnmi.njrusmc.net:57400",

"subscription-name": "default-1608951157",

"timestamp": 1608951167369000000,

"time": "2020-12-25T21:52:47.369-05:00",

"prefix": "Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node[node-name=0]/summary",

"updates": ["(snip)"]

}

Be sure to explore the gNMI protobuf definition files in greater depth, too. For those interested in program-
matic gNMI frameworks for Cisco products, the cisco-gnmi-python project is a good choice, which can be
installed using pip.

2.2.4 Python paramiko Library on IOS-XE

Many of the traditional scripts that network engineers have written to interact with devices have used
Python’s paramiko library. Before simplified wrapper tools like Ansible, networkers could interact with a
network device shell by sending raw commands and receiving byte strings in return. The mechanics are
generally simple but less elegant than modern tools. This brief demonstration uses paramiko to both collect
information from, and push information to, a Cisco CSR1000v running in AWS. The relevant version and
package information is listed below. You may need to use pip to install paramiko.

[ec2-user@devbox ~]# python3 --version

Python 3.6.5

[ec2-user@devbox ~]# python3 -m pip list | grep paramiko

paramiko (2.4.2)

Below is the code for the demonstration. The comments included in-line help explain what is happening at
a basic level. The file is cisco_paramiko.py.

import time

import paramiko

def send_cmd(conn, command):

"""

Given an open connection and a command, issue the command and wait

500 ms for the command to be processed.

"""

conn.send(command + '\n')

time.sleep(0.5)

def get_output(conn):

"""

Given an open connection, read all the data from the buffer and

decode the byte string as UTF-8.

"""

return conn.recv(65535).decode('utf-8')

def main():

"""

Execution starts here by creating an SSHClient object, assigning login

parameters, and opening a new shell via SSH.

"""

conn_params = paramiko.SSHClient()

conn_params.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Copyright 2021 Nicholas Russo http://njrusmc.net 119

https://github.com/cisco-ie/cisco-gnmi-python
http://njrusmc.net


conn_params.connect(hostname='172.31.31.144', port=22,

username='python', password='python',

look_for_keys=False, allow_agent=False)

conn = conn_params.invoke_shell()

print(f'Logged into {get_output(conn).strip()} successfully')

# Run some exec commands and print the output, including

# prompt returns and newlines.

commands = ['terminal length 0', 'show version', 'show inventory']

for command in commands:

send_cmd(conn, command)

print(get_output(conn))

# Run some configuration commands after issuing "conf t" and

# discard the output. Issue "end" afterwards

services = ['service nagle', 'service sequence-numbers', 'service dhcp']

send_cmd(conn, 'configure terminal')

for service in services:

send_cmd(conn, service)

send_cmd(conn, 'end')

if __name__ == '__main__':

main()

Before running this code, examine the configuration of the router’s services. Notice that DHCP is explicitly
disabled while nagle and sequence-numbers are disabled by default.

CSR1000V#show running-config | include service

service timestamps debug datetime msec

service timestamps log datetime msec

no service dhcp

Run the script using the command below, which logs into the router, gathers some basic information, and
applies some configuration updates.

[ec2-user@devbox ~]# python3 cisco_paramiko.py

Logged into CSR1000V# successfully

terminal length 0

CSR1000V#

show version

Cisco IOS XE Software, Version 16.09.01

Cisco IOS Software [Fuji], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 16.9.1, RELEASE SOFTWARE (fc2)

[version output truncated]

Configuration register is 0x2102

CSR1000V#

show inventory

NAME: "Chassis", DESCR: "Cisco CSR1000V Chassis"

PID: CSR1000V , VID: V00 , SN: 9CZ120O2S1L

NAME: "module R0", DESCR: "Cisco CSR1000V Route Processor"

PID: CSR1000V , VID: V00 , SN: JAB1303001C

NAME: "module F0", DESCR: "Cisco CSR1000V Embedded Services Processor"

PID: CSR1000V , VID: , SN:

CSR1000V#

After running this code, all three specified services are enabled. DHCP does not show up because it is

Copyright 2021 Nicholas Russo http://njrusmc.net 120

http://njrusmc.net


enabled by default, but no service dhcp is absent, implying service dhcp is enabled.

CSR1000V#show running-config | include service

service nagle

service timestamps debug datetime msec

service timestamps log datetime msec

service sequence-numbers

2.2.5 Python netmiko Library on IOS-XE

While paramiko is relatively easy to use, especially with simple wrapper functions for sending commands
and reading output, it has some weaknesses. First, it is unlikely that network engineers care about seeing
the exec shell prompt, the echoed command, and flurry of whitespace that accompanies much of the data
written to the receive buffer. Additionally, specifying a buffer read size, measured in bytes, to pull data
from the shell session is a low-level operation that could be abstracted. The netmiko library expands on
the capabilities of paramiko specifically for network engineers. This library was created and is currently
maintained by Kirk Byers. It serves as the base networking library for Network To Code (NTC) Ansible
modules and is popular in the network automation community, even for traditional Python coders. The
version and package information is below. The netmiko package can be installed using pip.

[ec2-user@devbox ~]# python3 --version

Python 3.6.5

[ec2-user@devbox ~]# python3 -m pip list | grep netmiko

netmiko (2.3.0)

Below is the code for the demonstration. Like the paramiko example, comments included in-line help explain
the steps. Notice that there is significantly less code, and the code that does exist is relatively simple and ab-
stract. The code accomplishes the same general tasks as the paramiko code. The file is cisco_netmiko.py.

from netmiko import ConnectHandler

def main():

"""

Execution starts here by creating a new connection with several

keyword arguments to log into the device.

"""

conn = ConnectHandler(device_type='cisco_ios', ip='172.31.31.144',

username='python', password='python')

print(f'Logged into {conn.find_prompt()} successfully')

# Run some exec commands and print the output, but don't need

# to define a custom function to send commands cleanly

commands = ['terminal length 0', 'show version', 'show inventory']

for command in commands:

print(conn.send_command(command))

# Run some configuration commands, don't need "conf t" anymore

# and don't need to build our own for loop

services = ['service nagle', 'service sequence-numbers', 'service dhcp']

conn.send_config_set(services)

if __name__ == '__main__':

main()

For completeness, below is a snippet of the services currently enabled. Just like in the paramiko example,
the three services we want to enable (DHCP, nagle, and sequence-numbers) are currently disabled.

Copyright 2021 Nicholas Russo http://njrusmc.net 121

https://pynet.twb-tech.com/blog/automation/netmiko.html
https://github.com/networktocode/ntc-ansible
https://github.com/networktocode/ntc-ansible
http://njrusmc.net


CSR1000V#show running-config | include service

service timestamps debug datetime msec

service timestamps log datetime msec

no service dhcp

Running the code, there is far less output since netmiko cleanly masks the shell prompt from being returned
with each command output, instead only returning the relevant/useful data.

[ec2-user@devbox ~]# python3 cisco_netmiko.py

Logged into CSR1000V# successfully

Cisco IOS XE Software, Version 16.09.01

Cisco IOS Software [Fuji], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 16.9.1, RELEASE SOFTWARE (fc2)

[snip]

Configuration register is 0x2102

NAME: "Chassis", DESCR: "Cisco CSR1000V Chassis"

PID: CSR1000V , VID: V00 , SN: 9CZ120O2S1L

NAME: "module R0", DESCR: "Cisco CSR1000V Route Processor"

PID: CSR1000V , VID: V00 , SN: JAB1303001C

NAME: "module F0", DESCR: "Cisco CSR1000V Embedded Services Processor"

PID: CSR1000V , VID: , SN:

After running this code, all three specified services in the services list are automatically configured with
minimal effort. Recall that service dhcp is enabled by default.

CSR1000V#show running-config | include service

service nagle

service timestamps debug datetime msec

service timestamps log datetime msec

service sequence-numbers

2.2.6 NETCONF using netconf-console on IOS-XE

YANG as a modeling language was discussed earlier in this document. This was lacking context because
YANG by itself provides little value. There needs to be some mechanism to transport the data that conforms
to these machine-friendly models. One of those transport options is NETCONF.

This section explores a short NETCONF/YANG example using Cisco CSR1000v on modern Everest soft-
ware. This router is running as an EC2 instance inside AWS. Using the EIGRP YANG model explored
earlier in this document, this section demonstrates configuration updates relating to EIGRP.

The simplest way to enable NETCONF/YANG is with the netconf-yang global command with no additional
arguments.

NETCONF_TEST#show running-config | include netconf

netconf-yang

RFC6242 describes NETCONF over SSH and TCP port 830 has been assigned for this service. A quick
test of the ssh shell command on port 830 shows a successful connection with several lines of XML being
returned. Without understanding what this data means, the names of several YANG modules are returned,
including the EIGRP one of interest.

Nicholass-MBP:ssh nicholasrusso# ssh -p 830 nctest@netconf.njrusmc.net

nctest@netconf.njrusmc.net's password:

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Copyright 2021 Nicholas Russo http://njrusmc.net 122

http://njrusmc.net


<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>

<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

[snip]

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp?module=Cisco-IOS-XE-eigrp&amp;

revision=2017-02-07</capability>

[snip]

The netconf-console.py tool is a simple way to interface with network devices that use NETCONF. This is
the same tool used in the Cisco blog post mentioned earlier. Rather than specify basic SSH login information
as command line arguments, the author suggests editing these values in the Python code to avoid typos
while testing. These options begin around line 540 of the netconf-console.py file.

parser.add_option("-u", "--user", dest="username", default="nctest",

help="username")

parser.add_option("-p", "--password", dest="password", default="nctest",

help="password")

parser.add_option("--host", dest="host", default="netconf.njrusmc.net",

help="NETCONF agent hostname")

parser.add_option("--port", dest="port", default=830, type="int",

help="NETCONF agent SSH port")

Run the playbook using Python 2 (not Python 3, as the code is not syntactically compatible) with the
--hello option to collect the list of supported capabilities from the router. Verify that the EIGRP mod-
ule is present. This output is similar to the native SSH shell test from above except it is handled through the
netconf-console.py tool.

Nicholass-MBP:YANG nicholasrusso# python netconf-console.py --hello

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>

<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>

<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>

<capability>[snip, many capabilities here]</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp?module=Cisco-IOS-XE-eigrp&amp;

revision=2017-02-07</capability>

</capabilities>

<session-id>26801</session-id>

</hello>

This device claims to support EIGRP configuration via NETCONF as verified above. To simplify the initial
configuration, an EIGRP snippet is provided below which adjusts the variables in scope for this test. These
are CLI commands and are unrelated to NETCONF.

# Applied to NETCONF_TEST router

router eigrp NCTEST

address-family ipv4 unicast autonomous-system 65001

af-interface GigabitEthernet1

bandwidth-percent 9

hello-interval 7

hold-time 8

Copyright 2021 Nicholas Russo http://njrusmc.net 123

http://njrusmc.net


When querying the router for this data, start at the topmost layer under the data field and drill down to the
interesting facts. The text below shows the current router eigrp configuration on the device using the
--get-config -x option set. Omitting any options and simply using --get-config will provide the entire
configuration, which is useful for finding out what the structure of the different CLI stanzas are.

Nicholass-MBP:YANG nicholasrusso# python netconf-console.py \

> --get-config -x "native/router/eigrp"

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<data>

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<router>

<eigrp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp">

<id>NCTEST</id>

<address-family>

<type>ipv4</type>

<af-ip-list>

<unicast-multicast>unicast</unicast-multicast>

<autonomous-system>65001</autonomous-system>

<af-interface>

<name>GigabitEthernet1</name>

<bandwidth-percent>9</bandwidth-percent>

<hello-interval>7</hello-interval>

<hold-time>8</hold-time>

</af-interface>

</af-ip-list>

</address-family>

</eigrp>

</router>

</native>

</data>

</rpc-reply>

Next, a small change will be applied using NETCONF. Each of the three variables will be incremented
by 10. Simply copy the eigrp data field from the remote procedure call (RPC) feedback, save it to a
file (eigrp-updates.xml for example), and hand-modify the variable values. Correcting the indentation
by removing leading whitespace is not strictly required but is recommended for readability. Below is an
example of the configuration parameters that NETCONF can push to the device.

Nicholass-MBP:YANG nicholasrusso# cat eigrp-updates.xml

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<router>

<eigrp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp">

<id>NCTEST</id>

<address-family>

<type>ipv4</type>

<af-ip-list>

<unicast-multicast>unicast</unicast-multicast>

<autonomous-system>65001</autonomous-system>

<af-interface>

<name>GigabitEthernet1</name>

<bandwidth-percent>19</bandwidth-percent>

<hello-interval>17</hello-interval>

<hold-time>18</hold-time>

</af-interface>

</af-ip-list>

</address-family>

</eigrp>

Copyright 2021 Nicholas Russo http://njrusmc.net 124

http://njrusmc.net


</router>

</native>

Using the --edit-config option, write these changes to the device. NETCONF will return an ok message
when complete.

Nicholass-MBP:YANG nicholasrusso# python netconf-console.py \

> --edit-config=./eigrp-updates.xml

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<ok/>

</rpc-reply>

Perform the get operation once more to ensure the value were updated correctly by NETCONF.

Nicholass-MBP:YANG nicholasrusso# python netconf-console.py \

> --get-config -x "native/router/eigrp"

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<data>

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<router>

<eigrp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-eigrp">

<id>NCTEST</id>

<address-family>

<type>ipv4</type>

<af-ip-list>

<unicast-multicast>unicast</unicast-multicast>

<autonomous-system>65001</autonomous-system>

<af-interface>

<name>GigabitEthernet1</name>

<bandwidth-percent>19</bandwidth-percent>

<hello-interval>17</hello-interval>

<hold-time>18</hold-time>

</af-interface>

</af-ip-list>

</address-family>

</eigrp>

</router>

</native>

</data>

</rpc-reply>

Logging into the router’s shell via SSH as a final check, the configuration changes made by NETCONF were
retained. Additionally, a syslog message suggests that the configuration was updated by NETCONF, which
helps differentiate it from regular CLI changes.

%DMI-5-CONFIG_I: F0: nesd: Configured from NETCONF/RESTCONF by nctest, transaction-id 81647

NETCONF_TEST#show running-config | section eigrp

router eigrp NCTEST

!

address-family ipv4 unicast autonomous-system 65001

!

af-interface GigabitEthernet1

bandwidth-percent 19

hello-interval 17

hold-time 18

Copyright 2021 Nicholas Russo http://njrusmc.net 125

http://njrusmc.net


2.2.7 NETCONF using Python and jinja2 on IOS-XE

While the netconf-console.py utility is an easy way to explore using NETCONF, a more realistic application
of the technology includes custom programming. The Python library ncclient, or NETCONF client for
short, provides an easily-consumable NETCONF API for Python programmers. The following program was
written by Dmitry Figol and was slightly modified by the author to fit this book’s format and style. Comments
are included throughout the code to provide high-level explanations of the process. In a sentence, the code
collects the running configuration and prints some basic system data, then adds some new loopbacks to
the router. The file is called pynetconf.py.

#!/usr/bin/python3

import jinja2

import xmltodict

from ncclient import manager

def get_config(connection_params):

# Open connection using the parameter dictionary

with manager.connect(**connection_params) as connection:

config_xml = connection.get_config(source='running').data_xml

config = xmltodict.parse(config_xml)['data']

return config

def configure_device(connection_params, config_data, template_name):

# Load the jinja2 templates and process the template to build XML config

j2_tmp = jinja2.Environment(

loader=jinja2.FileSystemLoader(searchpath='./'))

template = j2_tmp.get_template(template_name)

config = template.render(config_data)

# Push XML configuration to network device

with manager.connect(**connection_params) as connection:

response = connection.edit_config(target='running', config=config)

def main():

# Login information for the router

connection_params = {

'host': '172.31.55.203',

'username': 'cisco',

'password': 'cisco',

'hostkey_verify': False,

}

# The data we want to push. We can define this structure

# however it makes sense for our environment.

config_data = {

'loopbacks': [

{

'number': '42518',

'description': 'No IP on this one yet!'

},

{

'number': '53592',

'ipv4_address': '192.0.2.1',

'ipv4_mask': '255.255.255.0'

}

]

}

# Get the configuration before making changes

Copyright 2021 Nicholas Russo http://njrusmc.net 126

https://twitter.com/dmfigol
http://njrusmc.net


config = get_config(connection_params)

# Print a subset of available configuration information

sw_version = config['native']['version']

hostname = config['native']['hostname']

top_keys = list(config['native'].keys())

print(f'SW version: {sw_version}')

print(f'Hostname: {hostname}')

print(f'top level keys: {top_keys}')

# Configure the device using parameters defined above

configure_device(connection_params=connection_params,

config_data=config_data, template_name='loopbacks.j2')

if __name__ == '__main__':

main()

The file below is a jinja2 template file. Jinja2 is a text templating language commonly used with Python
applications and their derivative products, such as Ansible. It contains basic programming logic such as
conditionals, iteration, and variable substitution. By substituting variables into an XML template, the output
is a data structure that NETCONF can push to the devices. The variable fields have been highlighted to
show the relevant logic.

<config>

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<interface>

{% for loopback in loopbacks %}

<Loopback>

<name>{{ loopback.number }}</name>

{% if loopback.description is defined %}

<description>{{ loopback.description }}</description>

{% endif %}

{% if loopback.ipv4_address is defined %}

<ip>

<address>

<primary>

<address>{{ loopback.ipv4_address }}</address>

<mask>{{ loopback.ipv4_mask }}</mask>

</primary>

</address>

</ip>

{% endif %}

</Loopback>

{% endfor %}

</interface>

</native>

</config>

Before running the code, verify that netconf-yang is configured as explained during the NETCONF console
demonstration, along with a privilege 15 user. The code above reveals that the demo username/password
is cisco/cisco. After running the code, the output below is printed to standard output. The author has
included the “top level keys” just to show a few other high level options available. Collecting information via
NETCONF is far superior to CLI-based screen scraping via regular expressions for text parsing.

[ec2-user@devbox]# python3 pynetconf.py

SW version: 16.9

Hostname: CSR1000v

top level keys: ['@xmlns', 'version', 'boot-start-marker', 'boot-end-marker',

'service', 'platform', 'hostname', 'username', 'vrf', 'ip', 'interface',

'control-plane', 'logging', 'multilink', 'redundancy', 'spanning-tree',

Copyright 2021 Nicholas Russo http://njrusmc.net 127

http://njrusmc.net


'subscriber', 'crypto', 'license', 'line', 'iox', 'diagnostic']

For those who are also logged into the router via SSH, the log message below will be generated when the
NETCONF client accesses the device. This can be useful for troubleshooting unexpected changes or rogue
NETCONF logins.

%DMI-5-AUTH_PASSED: R0/0: dmiauthd: User 'cisco' authenticated successfully

from 172.31.61.35:47284 and was authorized for netconf over ssh. External groups: PRIV15

Using basic show commands, verify that the two loopbacks were added successfully. The nested dictionary
above indicates that Loopback 42518 has a description defined but no IP addresses. Likewise, Loopback
53592 has an IPv4 address and subnet mask defined, but no description. The Jinja2 template supplied,
which generates the XML configuration to be pushed to the router, makes both of these parameters optional.

CSR1000v#show running-config interface Loopback42518

interface Loopback42518

description No IP on this one yet!

no ip address

CSR1000v#show running-config interface Loopback53592

interface Loopback53592

ip address 192.0.2.1 255.255.255.0

Last, check the statistics to see the incoming NETCONF sessions and corresponding incoming remote
procedure calls (RPCs). This indicates that everything is working correctly.

CSR1000v#show netconf-yang statistics

netconf-start-time : 2018-12-09T01:04:44+00:00

in-rpcs : 8

in-bad-rpcs : 0

out-rpc-errors : 0

out-notifications : 0

in-sessions : 4

dropped-sessions : 0

in-bad-hellos : 0

2.2.8 REST API on IOS-XE

This section will detail a basic IOS XE REST API call to a Cisco router. While there are more powerful GUIs
to interact with the REST API on IOS XE devices, this demonstration will use the curl CLI utility, which
is supported on Linux, Mac, and Windows operating systems. These tests were conducted on a Linux
machine in Amazon Web Services (AWS) which was targeting a Cisco CSR1000v. Before beginning, all of
the relevant version information is shown on the follow page for reference.

RTR_CSR1#show version | include RELEASE

Cisco IOS Software, CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 15.5(3)S4a, RELEASE SOFTWARE (fc1)

[root@ip-10-125-0-100 restapi]# uname -a

Linux ip-10-125-0-100.ec2.internal 3.10.0-514.16.1.el7.x86_64 #1 SMP

Fri Mar 10 13:12:32 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

[root@ip-10-125-0-100 restapi]# curl -V

curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.21 [snip]

Protocols: dict file ftp ftps gopher http https [snip]

Features: AsynchDNS GSS-Negotiate IDN NTLM NTLM_WB SSL libz unix-sockets

First, the basic configuration to enable the REST API feature on IOS XE devices is shown below. A brief
verification shows that the feature is enabled and uses TCP port 55443 by default. This port number is
important later as the curl command will need to know it.

Copyright 2021 Nicholas Russo http://njrusmc.net 128

http://njrusmc.net


interface GigabitEthernet1

description MGMT INTERFACE

ip address dhcp

! or a static IP address

virtual-service csr_mgmt

ip shared host-interface GigabitEthernet1

activate

ip http secure-server

transport-map type persistent webui HTTPS_WEBUI

secure-server

transport type persistent webui input HTTPS_WEBUI

remote-management

restful-api

RTR_CSR1#show virtual-service detail | section ^Proc|^Feat|estful

Process Status Uptime # of restarts

restful_api UP 0Y 0W 0D 0:49: 7 0

Feature Status Configuration

Restful API Enabled, UP port: 55443

auto-save-timer: 30 seconds

socket: unix:/usr/local/nginx/[snip]

single-session: Disabled

Using curl for IOS XE REST API invocations requires a number of options. Those options are summa-
rized next. They are also described in the manual pages for curl (use the man curl shell command).
This specific demonstration will be limited to obtaining an authentication token, posting a QoS class-map
configuration, and verifying that it was written.

Main argument: /api/v1/qos/class-map

X: custom request is forthcoming

v: verbose. Prints all debugging output which is useful for troubleshooting and learning.

u: username:password for device login

H: Extra header needed to specify that JSON is being used. Every new POST

request must contain JSON in the body of the request. It is also used with

GET, POST, PUT, and DELETE requests after an authentication token has been obtained.

d: sends the specified data in an HTTP POST request

k: insecure. This allows curl to accept certificates not signed by a trusted

CA. For testing purposes, this is required to accept the router’s self-signed

certificate. It is not a good idea to use it in production networks.

3: force curl to use SSLv3 for the transport to the managed device. This can

be detrimental and should be used cautiously (discussed later).

The first step is obtaining an authentication token. This allows the HTTPS client to supply authentication
credentials once, such as username/password, and then can use the token for authentication for all future
API calls. The initial attempt at obtaining this token fails. This is a common error so the troubleshooting to
resolve this issue is described in this document. The two HTTPS endpoints cannot communicate due to not
supporting the same cipher suites. Note that it is critical to specify the REST API port number (55443) in
the URL, otherwise the standard HTTPS server will respond on port 443 and the request will fail.

[root@ip-10-125-0-100 restapi]# curl -v \

Copyright 2021 Nicholas Russo http://njrusmc.net 129

http://njrusmc.net


> -X POST https://csr1:55443/api/v1/auth/token-services \

> -H "Accept:application/json" -u "ansible:ansible" -d "" -k -3

* About to connect() to csr1 port 55443 (#0)

* Trying 10.125.1.11...

* Connected to csr1 (10.125.1.11) port 55443 (#0)

* Initializing NSS with certpath: sql:/etc/pki/nssdb

* NSS error -12286 (SSL_ERROR_NO_CYPHER_OVERLAP)

* Cannot communicate securely with peer: no common encryption algorithm(s).

* Closing connection 0

curl: (35) Cannot communicate securely with peer: no common encryption algorithm(s).

Sometimes installing/update the following packages can solve the issue. In this case, these updates did not
help.

[root@ip-10-125-0-100 restapi]# yum install -y nss nss-util nss-sysinit nss-tools

Loaded plugins: amazon-id, rhui-lb, search-disabled-repos

Package nss-3.28.4-1.0.el7_3.x86_64 already installed and latest version

Package nss-util-3.28.4-1.0.el7_3.x86_64 already installed and latest version

Package nss-sysinit-3.28.4-1.0.el7_3.x86_64 already installed and latest version

Package nss-tools-3.28.4-1.0.el7_3.x86_64 already installed and latest version

Nothing to do

If that fails, curl the following website. It will return a JSON listing of all ciphers supported by your current
HTTPS client. Piping the output into jq, a popular utility for querying JSON structures, pretty-prints the
JSON output for human readability.

[root@ip-10-125-0-100 restapi]# curl https://www.howsmyssl.com/a/check | jq

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 1417 100 1417 0 0 9572 0 --:--:-- --:--:-- --:--:-- 9639

{

"given_cipher_suites": [

"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",

"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",

"TLS_DHE_RSA_WITH_AES_256_GCM_SHA384",

"TLS_DHE_RSA_WITH_AES_256_CBC_SHA",

"TLS_DHE_DSS_WITH_AES_256_CBC_SHA",

"TLS_DHE_RSA_WITH_AES_256_CBC_SHA256",

"TLS_DHE_RSA_WITH_AES_128_GCM_SHA256",

"TLS_DHE_RSA_WITH_AES_128_CBC_SHA",

"TLS_DHE_DSS_WITH_AES_128_CBC_SHA",

"TLS_DHE_RSA_WITH_AES_128_CBC_SHA256",

"TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA",

"TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA",

"TLS_RSA_WITH_AES_256_GCM_SHA384",

"TLS_RSA_WITH_AES_256_CBC_SHA",

"TLS_RSA_WITH_AES_256_CBC_SHA256",

"TLS_RSA_WITH_AES_128_GCM_SHA256",

"TLS_RSA_WITH_AES_128_CBC_SHA",

"TLS_RSA_WITH_AES_128_CBC_SHA256",

"TLS_RSA_WITH_3DES_EDE_CBC_SHA",

"TLS_RSA_WITH_RC4_128_SHA",

"TLS_RSA_WITH_RC4_128_MD5"

Copyright 2021 Nicholas Russo http://njrusmc.net 130

http://njrusmc.net


],

"ephemeral_keys_supported": true,

"session_ticket_supported": false,

"tls_compression_supported": false,

"unknown_cipher_suite_supported": false,

"beast_vuln": false,

"able_to_detect_n_minus_one_splitting": false,

"insecure_cipher_suites": {

"TLS_RSA_WITH_RC4_128_MD5": [

"uses RC4 which has insecure biases in its output"

],

"TLS_RSA_WITH_RC4_128_SHA": [

"uses RC4 which has insecure biases in its output"

]

},

"tls_version": "TLS 1.2",

"rating": "Bad"

}

The utility sslscan can help find the problem. The issue is that the CSR1000v only supports the TLSv1
versions of the ciphers, not the SSLv3 version. The curl command issued above forced curl to use SSLv3
with the -3 option as prescribed by the documentation. This is a minor error in the documentation which
has been reported and may be fixed at the time of your reading. This troubleshooting excursion is likely to
have value for those learning about REST APIs on IOS XE devices in a general sense, since establishing
HTTPS transport is a prerequisite.

[root@ip-10-125-0-100 ansible]# sslscan --version

sslscan version 1.10.2

OpenSSL 1.0.1e-fips 11 Feb 2013

[root@ip-10-125-0-100 restapi]# sslscan csr1 | grep " RC4-SHA"

RC4-SHA

RC4-SHA

RC4-SHA

RC4-SHA

Rejected SSLv3 112 bits RC4-SHA

Accepted TLSv1 112 bits RC4-SHA

Failed TLS11 112 bits RC4-SHA

Failed TLS12 112 bits RC4-SHA

Removing the -3 option will fix the issue. Using sslscan was still useful because, ignoring the RC4 cipher it-
self used with grep, one can note that the TLSv1 variant was accepted while the SSLv3 variant was rejected,
which would suggest a lack of support for SSLv3 ciphers. It appears that the TLS_DHE_RSA_WITH_AES_256_CBC_SHA

cipher was chosen for the connection when the curl command is issued again. Below is the correct output
from a successful curl.

[root@ip-10-125-0-100 restapi]# curl -v -X \

> POST https://csr1:55443/api/v1/auth/token-services \

> -H "Accept:application/json" -u "ansible:ansible" -d "" -k

* About to connect() to csr1 port 55443 (#0)

* Trying 10.125.1.11...

* Connected to csr1 (10.125.1.11) port 55443 (#0)

* Initializing NSS with certpath: sql:/etc/pki/nssdb

* skipping SSL peer certificate verification

* SSL connection using TLS_DHE_RSA_WITH_AES_256_CBC_SHA

* Server certificate:

* subject: CN=restful_api,ST=California,O=Cisco,C=US

* start date: May 26 05:32:46 2013 GMT

* expire date: May 24 05:32:46 2023 GMT

Copyright 2021 Nicholas Russo http://njrusmc.net 131

http://njrusmc.net


* common name: restful_api

* issuer: CN=restful_api,ST=California,O=Cisco,C=US

* Server auth using Basic with user 'ansible'

> POST /api/v1/auth/token-services HTTP/1.1

[snip]

>

< HTTP/1.1 200 OK

< Server: nginx/1.4.2

< Date: Sun, 07 May 2017 16:35:18 GMT

< Content-Type: application/json

< Content-Length: 200

< Connection: keep-alive

<

* Connection #0 to host csr1 left intact

{"kind": "object#auth-token", "expiry-time": "Sun May 7 16:50:18 2017",

"token-id": "YGSBUtzTpfK2QumIEk8dt9rXhHjZfAJSZXYXDXg162Q=",

"link": "https://csr1:55443/api/v1/auth/token-services/6430558689"}

The final step is using an HTTPS POST request to write new data to the router. One can embed the JSON
text as a single line into the curl command using the -d option. The command appears intimidating at a
glance. Note the single quotes (”) surrounding the JSON data with the -d option; these are required since
the keys and values inside the JSON structure have “double quotes”. Additionally, the username/password
is omitted from the request, and additional headers (-H) are applied to include the authentication token
string and the JSON content type.

[root@ip-10-125-0-100 restapi]# curl -v -H "Accept:application/json" \

> -H "X-Auth-Token: YGSBUtzTpfK2QumIEk8dt9rXhHjZfAJSZXYXDXg162Q=" \

> -H "content-type: application/json" -X POST https://csr1:55443/api/v1/qos/class-map

> -d '{"cmap-name": "CMAP_AF11","description": "QOS CLASS MAP FROM REST API CALL", \

> "match-criteria": {"dscp": [{"value": "af11","ip": false}]}}' -k

* About to connect() to csr1 port 55443 (#0)

* Trying 10.125.1.11...

* Connected to csr1 (10.125.1.11) port 55443 (#0)

* Initializing NSS with certpath: sql:/etc/pki/nssdb

* skipping SSL peer certificate verification

* SSL connection using TLS_DHE_RSA_WITH_AES_256_CBC_SHA

* Server certificate:

* subject: CN=restful_api,ST=California,O=Cisco,C=US

* start date: May 26 05:32:46 2013 GMT

* expire date: May 24 05:32:46 2023 GMT

* common name: restful_api

* issuer: CN=restful_api,ST=California,O=Cisco,C=US

> POST /api/v1/qos/class-map HTTP/1.1

> User-Agent: curl/7.29.0

[snip]

< HTTP/1.1 201 CREATED

< Server: nginx/1.4.2

< Date: Sun, 07 May 2017 16:48:05 GMT

< Content-Type: text/html; charset=utf-8

< Content-Length: 0

< Connection: keep-alive

< Location: https://csr1:55443/api/v1/qos/class-map/CMAP_AF11

<

* Connection #0 to host csr1 left intact

This newly-configured class-map can be verified using an HTTPS GET request. The data field is stripped to
the empty string, POST is changed to GET, and the class-map name is appended to the URL. The verbose
option (-v) is omitted for brevity. Writing this output to a file and using the jq utility can be a good way to

Copyright 2021 Nicholas Russo http://njrusmc.net 132

http://njrusmc.net


query for specific fields. Piping the output to tee allows it to be written to the screen and redirected to a file.

[root@ip-10-125-0-100 restapi]# curl -H "Accept:application/json" \

> -H "X-Auth-Token: YGSBUtzTpfK2QumIEk8dt9rXhHjZfAJSZXYXDXg162Q="

> -H "content-type: application/json" \

> -X GET https://csr1:55443/api/v1/qos/class-map/CMAP_AF11

> -d "" -k | tee cmap_af11.json

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 195 100 195 0 0 792 0 --:--:-- --:--:-- --:--:-- 792

{"cmap-name": "CMAP_AF11", "kind": "object#class-map", "match-criteria":

{"dscp": [{"ip": false, "value": "af11"}]}, "match-type": "match-all",

"description": " QOS CLASS MAP FROM REST API CALL"}

[root@ip-10-125-0-100 restapi]# jq '.description' cmap_af11.json

" QOS CLASS MAP FROM REST API CALL"

Logging into the router to verify the request via CLI is a good idea while learning, although using HTTPS
GET verified the same thing.

RTR_CSR1#show running-config class-map

[snip]

class-map match-all CMAP_AF11

description QOS CLASS MAP FROM REST API CALL

match dscp af11

end

2.2.9 RESTCONF on IOS-XE

RESTCONF is a relatively new API offered by Cisco IOS XE. RESTCONF is a new API introduced into
Cisco IOS XE 16.3.1 which has some characteristics of NETCONF and the classic REST API. It uses
HTTP/HTTPS for transport much like the REST API, but appears to be simpler. It is like NETCONF in terms
of its usefulness for configuring devices using data modeled in YANG; it supports JSON and XML formats
for retrieved data. The version of the router is shown below as it differs from the router used in other tests.

DENALI#show version | include RELEASE

Cisco IOS Software [Denali], CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 16.3.1a, RELEASE SOFTWARE (fc4)

Enabling RESTCONF requires a single hidden command in global configuration, shown below as simply
restconf. This feature is not TAC supported at the time of this writing and should be used for experimenta-
tion only. Additionally, a loopback interface with an IP address and description is configured. For simplicity,
RESTCONF testing will be limited to insecure HTTP to demonstrate the capability without dealing with
SSL/TLS ciphers.

DENALI#show running-config | include restconf

restconf

DENALI#show running-config interface loopback 42518

interface Loopback42518

description COOL INTERFACE

ip address 172.16.192.168 255.255.255.255

The curl utility is useful with RESTCONF as it was with the class REST API. The difference is that the data
retrieval process is more intuitive. First, we query the interface IP address, then the description. Both of
the URLs are simple and the overall curl command syntax is easy to understand. The output comes back
in easy-to-read XML which is convenient for machines that will use this information. Some data is nested,
like the IP address, as there could be multiple IP addresses. Other data, like the description, need not be
nested as there is only ever one description per interface.

Copyright 2021 Nicholas Russo http://njrusmc.net 133

http://njrusmc.net


[root@ip-10-125-0-100 ~]# curl \

> http://denali/restconf/api/config/native/interface/Loopback/42518/ip/address \

> -u "username:password"

<address xmlns="http://cisco.com/ns/yang/ned/ios"

xmlns:y="http://tail-f.com/ns/rest"

xmlns:ios="http://cisco.com/ns/yang/ned/ios">

<primary>

<address>172.16.192.168</address>

<mask>255.255.255.255</mask>

</primary>

</address>

[root@ip-10-125-0-100 ~]# curl \

> http://denali/restconf/api/config/native/interface/Loopback/42518/description \

> -u "username:password"

<description xmlns="http://cisco.com/ns/yang/ned/ios"

xmlns:y="http://tail-f.com/ns/rest"

xmlns:ios="http://cisco.com/ns/yang/ned/ios">COOL INTERFACE

</description>

This section does not detail other HTTP operations such as POST, PUT, and DELETE using RESTCONF.
The feature is still very new and is tightly integrated with postman, a tool that generates HTTP requests
automatically.

2.3 Controller based network design

Software-Defined Networking (SDN) is a concept that networks can be both programmable and disaggre-
gated concurrently, ultimately providing additional flexibility, intelligence, and customization for the network
administrators. Because the definition of SDN varies so widely within the network community, it should be
thought of as a continuum of different models rather than a single, prescriptive solution.

2.3.1 SDN Models

There are four main SDN models as defined in The Art of Network Architecture: Business-Driven Design
by Russ White and Denise Donohue (Cisco Press 2014). The models are discussed briefly below.

1. Distributed: Although not really an “SDN” model at all, it is important to understand the status quo.
Network devices today each have their own control-plane components which rely on distributed routing
protocols (such as OSPF, BGP, etc). These protocols form paths in the network between all relevant
endpoints (IP prefixes, etc). Devices typically do not influence one another’s routing decisions indi-
vidually as traffic is routed hop-by-hop through the network without centralized oversight. This model
totally distributes the control-plane across all devices. Such control-planes are also autonomous; with
minimal administrative effort, they often form neighborships and advertise topology and/or reachability
information. Some of the drawbacks include potential routing loops (typically transient ones during pe-
riods of convergence) and complex routing schemes in poorly designed/implemented networks. The
diagram that follows depicts several routers each with their own control-plane and no centralization.

Copyright 2021 Nicholas Russo http://njrusmc.net 134

http://www.ciscopress.com/store/art-of-network-architecture-business-driven-design-9780133259230
https://twitter.com/rtggeek
ihttps://twitter.com/LadyNetwkr
http://njrusmc.net


Figure 45: SDN Model — Distributed

2. Augmented: This model relies on a fully distributed control-plane by adding a centralized controller
that can apply policy to parts of the network at will. Such a controller could inject shorter-match IP
prefixes, policy-based routing (PBR), security features (ACL), or other policy objects. This model is a
good compromise between distributing intelligence between nodes to prevent singles points of failure
(which a controller introduces) by using a known-good distributed control-plane underneath. The
policy injection only happens when it “needs to”, such as offloading traffic from an overloaded link in
a DC fabric or traffic from a long-haul fiber link between two points of presence (POPs) in an SP core.
Cisco’s Performance Routing (PfR) is an example of the augmented model which uses the Master
Controller (MC) to push policy onto remote forwarding nodes. Another example includes offline path
computation element (PCE) servers for automated MPLS TE tunnel creation. In both cases, a small
set of routers (PfR border routers or TE tunnel head-ends) are modified, yet the remaining routers are
untouched. This model has a lower impact on the existing network because the wholesale failure of
the controller simply returns the network to the distributed model, which is a viable solution for many
businses cases. The diagram that follows depicts the augmented SDN model.

Figure 46: SDN Model — Augmented

Copyright 2021 Nicholas Russo http://njrusmc.net 135

http://njrusmc.net


3. Hybrid: This model is very similar to the augmented model except that controller-originated policy
can be imposed anywhere in the network. This gives additional granularity to network administrators;
the main benefit over the augmented model is that the hybrid model is always topology-independent.
The topological restrictions of which nodes the controller can program/affect are not present in this
model. Cisco’s Application Centric Infrastructure (ACI) is a good example of this model. ACI separates
reachability from policy, which is critical from both survivability and scalability perspectives. This
solution uses the Application Policy Infrastructure Controller (APIC) as the policy application tool. The
failure of the centralized controller in these models has an identical effect to that of a controller in the
augmented model; the network falls back to a distributed model. The impact of a failed controller is
a more significant since more devices are affected by the controller’s policy when compared to the
augmented model. The diagram that follows depicts the augmented SDN model.

Figure 47: SDN Model — Hybrid

4. Centralized: This is the model most commonly referenced when the phrase “SDN” is used. It relies
on a single controller, which hosts the entire control-plane. Ultimately, this device commands all of
the devices in the forwarding-plane. These controllers push their forwarding tables with the proper
information (which doesn’t necessarily have to be an IP-based table, it could be anything) to the
forwarding hardware as specified by the administrators. This offers very granular control, in many
cases, of individual flows in the network. The hardware forwarders can be commoditized into white
boxes (or branded white boxes, sometimes called brite boxes) which are often inexpensive. Another
value proposition of centralizing the control-plane is that a “device” can be almost anything: router,
switch, firewall, load-balancer, etc. Emulating software functions on generic hardware platforms can
add flexibility to the business.

The most significant drawback is the newly-introduced single point of failure and the inability to create
failure domains as a result. Some SDN scaling architectures suggest simply adding additional con-
trollers for fault tolerance or to create a hierarchy of controllers for larger networks. While this is a valid
technique, it somewhat invalidates the “centralized” model because with multiple controllers, the dis-
tributed control-plane is reborn. The controllers still must synchronize their configuration, and in some
cases, state information such as routing and flow data. This occurs via a network-based protocol
and the possibility of inconsistencies between the controllers is real. When using this multi-controller
architecture, the network designer must understand that there is, in fact, a distributed control-plane
in the network; it has just been moved around. The failure of all controllers means the entire failure
domain supported by those controllers will be at the very best static (unable to adjust to changes),
and at the very worst inoperable. The failure of the communication paths between controllers could
likewise cause inconsistent/intermittent problems with forwarding, just like a fully distributed control-

Copyright 2021 Nicholas Russo http://njrusmc.net 136

http://njrusmc.net


plane. OpenFlow is a good example of a fully-centralized model. Nodes colored gray in the diagram
that follows have no standalone control plane of their own, relying entirely on the controller.

Figure 48: SDN Model — Centralized

These SDN designs warrant additional discussion, specifically around the communications channels that
allow them to function. An SDN controller sits “in the middle” of the SDN notional architecture. It uses
northbound and southbound communication paths to operate with other components of the architecture.

The northbound interfaces are considered APIs which are interfaces to existing business applications.
This is generally used so that applications can make requests of the network, which could include specific
performance requirements (bandwidth, latency, etc). Because the controller “knows” this information by
communicating with the infrastructure devices via management agents, it can determine the best paths
through the network to satisfy these constraints. This is loosely analogous to the original intent of the
Integrated Services QoS model using Resource Reservation Protocol (RSVP) where applications would
reserve bandwidth on a per-flow basis. It is also similar to MPLS TE constrained SPF (CSPF) where a
single device can source-route traffic through the network given a set of requirements. The logic is being
extended to applications with a controller “shim” in between, ultimately providing a full network view for
optimal routing. A REST API is an example of a northbound interface.

The southbound interfaces include the control-plane protocol between the centralized controller and the
network forwarding hardware. These are the less intelligent network devices used for forwarding only (as-
suming a centralized model). A common control-plane used for this purpose would be OpenFlow; the
controller determines the forwarding tables per flow per network device, programs this information, and
then the devices obey it. Note that OpenFlow is not synonymous with SDN; it is just an example of one
southbound control-plane protocol. Because the SDN controller is sandwiched between the northbound
and southbound interfaces, it can be considered “middleware” in a sense. The controller is effectively able
to evaluate application constraints and produce forwarding-table outputs.

The image that follows depicts a very high-level diagram of the SDN layers as it relates to interaction
between components.

Copyright 2021 Nicholas Russo http://njrusmc.net 137

http://njrusmc.net


Figure 49: SDN Communications Channels

There are many trade-offs between the different SDN models. The table that follows attempts to capture
the most important ones. Looking at the SDN market at the time of this writing, many solutions seem to be
either hybrid or augmented models. SD-WAN solutions, such as Cisco Viptela, only make changes at the
edge of the network and use overlays/tunnels as the primary mechanism to implement policy.

Distributed Augmented Hybrid Centralized

Availability Dependent on the
protocol
convergence
times and
redundancy in the
network. Highly
automonous and
heals itself
without a central
brain

Dependent on the
protocol
convergence
times and
redundancy in the
network. Doesnt
matter how bad
the SDN
controller is its
failure is tolerable

Dependent on the
protocol
convergence
times and
redundancy in the
network. Doesnt
matter how bad
the SDN
controller is its
failure is tolerable

Heavily reliant on
a single SDN
controller, unless
one adds
controllers to split
failure domains or
to make one
failure domain
resilient (both
introduce a
distributed
control-plane)

Granularity /
control

Generally low for
IGPs but better
for BGP. All
devices generally
need a common
view of the
network to
prevent loops
independently.
MPLS TE helps
somewhat.

Better than
distributed since
policy injection
can happen at
the network edge,
or a small set of
nodes. Can be
combined with
MPLS TE for
more granular
selection.

Moderately
granular since
SDN policy
decisions are
extended to all
nodes. Can
influence
decisions based
on any arbitrary
information within
a datagram

Very highly
granular;
complete control
over all routing
decisions based
on any arbitrary
information within
a datagram

Copyright 2021 Nicholas Russo http://njrusmc.net 138

http://njrusmc.net


Scalability Very high in a
properly designed
network (failure
domain isolation,
topology
summarization,
reachability
aggregation, etc)

High, but gets
worse with more
policy injection.
Policies are
generally limited
to key nodes
(such as border
routers)

Moderate, but
gets worse with
more policy
injection. Policy is
proliferated
across the
network to all
nodes (exact
quantity may vary
per node)

Depends; all
devices retain
state for all
transiting flows.
Hardware-
dependent on
TCAM and
whether it can
use other tables
such as L4 ports
or IPv6 flow
labels

2.3.2 Centralized SDN using OpenFlow and Faucet

When people think of “real” SDN (which often implies a fully centralized, open-standards technology suite),
OpenFlow is commonly used as the southbound protocol between the SDN controller and the network
devices. This section demonstrates how to use the Faucet controller, built on the Ryu framework, and the
Open vSwitch (OVS) device, a Linux-based network device that is lightweight and easy to deploy.

The topology used in this demonstration is shown below. OVS will interconnect two standard Cisco IOS
routers which are managed autonomously. Behind each router is a simulated LAN segment with “users”
behind R1 and “servers” behind R2. The lab uses IPv6 only with OSPFv3 routing enabled between R1 and
R2 across OVS. The OVS GNS3 appliance runs inside Docker (hidden from GNS3 users) and connects
over the Internet to a Faucet instance running in the cloud. One could run Faucet within GNS3 on a Linux
machine, but testing it in the cloud improved accessibility and helped tie in additional evolving technologies.

Figure 50: OpenFlow Testbed Topology in GNS3

Configuring OVS for the first time is a bit tricky because the exact commands required depend upon the
initial OVS image. The GNS3 appliance comes with 4 Linux bridges, each of which is effectively its own
virtual switch. All 16 ports are initially in the br0 bridge. Each port has a number which is dynamically
assigned by OVS during initialization; these numbers become important later. The output below shows that

Copyright 2021 Nicholas Russo http://njrusmc.net 139

https://faucet.nz/
https://osrg.github.io/ryu-book/en/html/
https://www.openvswitch.org/
https://gns3.com/marketplace/appliances/open-vswitch
http://njrusmc.net


eth0 is port 1, eth1 is port 2, and eth2 is port 3. According to the topology, eth0 will be used for OpenFlow
management back to Faucet, while eth1 and eth2 will connect to R1 and R2, respectively. The OVS version
is also included below for completeness.

/ # ovs-vsctl -V

ovs-vsctl (Open vSwitch) 2.4.0

Compiled Apr 6 2016 14:08:48

DB Schema 7.12.1

/ # ovs-ofctl show br0

OFPT_FEATURES_REPLY (xid=0x2): dpid:0000a2bbc9e0024f

n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP

actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src

mod_dl_dst mod_nw_src mod_nw_dst mod_nw_tos mod_tp_src mod_tp_dst

1(eth0): addr:8a:1d:41:af:df:a4

config: 0

state: 0

current: 10MB-FD COPPER

speed: 10 Mbps now, 0 Mbps max

2(eth1): addr:ce:d2:75:9f:f1:ed

config: 0

state: 0

current: 10MB-FD COPPER

speed: 10 Mbps now, 0 Mbps max

3(eth2): addr:ce:26:d0:13:7a:7d

config: 0

state: 0

current: 10MB-FD COPPER

speed: 10 Mbps now, 0 Mbps max

(snip, more interfaces)

Before continuing with the OVS setup, the author recommends completing the Faucet setup. This document
does not recite every Faucet setup command as they are well-documented in their Installing Faucet for the
first time tutorial. The packages, which require a Debian-based distribution, also include Gauge (for mea-
suring port statistics), Prometheus (for measuring system health), and Grafana (for visualizing the results
of both). The remainder of this demonstration assumes that the basic setup steps have been completed.

Now that we have the interface numbers, we can populate the main /etc/faucet/faucet.yaml Faucet
configuration file. The file includes another file named acls.yaml which we’ll explore shortly. Next, it
defines a single VLAN named transport which uses an 802.1Q VLAN ID of 12. This VLAN interconnects
R1 and R2 across OVS.

Then, the file defines the OpenFlow datapaths, or DPs for short. A datapath is a 64-bit field whereby the
low-order 48 bits are usually used for the switch MAC address and the high-order 16 bits can be anything.
This demo uses the number 1 to keep things simple, but in short, each DP represents an OpenFlow instance
on a device. That means each Linux bridge interface would have exactly one DP assigned. We’ll need to
configure a DPID of 1 on our OVS br0 bridge later.

After specifying the correct hardware type for our sw1 device, we enumerate the interfaces. YAML comments
are included to map the output from the ovs-ofctl show br0 command issued earlier, which revealed the
interface numbers. These numbers are the dictionary keys and must match the OVS numbers we recorded.
In addition to a self-explanatory name and description for each device, we specify the native_vlan which
is equivalent to the Cisco IOS command of switchport access vlan. OVS will expect untagged Ethernet
frames on these ports and will internally map them to VLAN 12 per our configuration.

root@faucet:/etc/faucet# cat faucet.yaml

---

include:

Copyright 2021 Nicholas Russo http://njrusmc.net 140

https://docs.faucet.nz/en/latest/tutorials/first_time.html
http://njrusmc.net


- "acls.yaml"

vlans:

transport:

vid: 12

description: "R1-R2 link"

dps:

sw1:

dp_id: 0x1 # datapath-id=0000000000000001

hardware: "Open vSwitch"

interfaces:

2: # 2(eth1): addr:ce:d2:75:9f:f1:ed

name: "R1"

description: "User Gateway"

native_vlan: "transport"

acl_in: "R1_INBOUND"

3: # 3(eth2): addr:ce:26:d0:13:7a:7d

name: "R2"

description: "Server Gateway"

native_vlan: "transport"

...

By itself, the configuration file above is adequate to establish connectivity between R1 and R2. However,
the promise of OpenFlow is that it can provide more granular policy matching rather than just basic VLAN
management. The /etc/faucet/acls.yaml file, which was included in the /etc/faucet/faucet.yaml file,
allows us to specify access-control lists (ACLs) to restrict traffic flow much like a traditional router would.

A single ACL is defined which is named R1_INBOUND and has three rules. The ACL is a list of nested
dictionaries and is relatively easy to interpret. First, all IPv4 traffic will be dropped by matching the IPv4
Ethertype. Second, IPv6 Telnet is blocked from users to servers, presumably because Telnet is insecure
and we don’t want it on the network at all. This complex rule matches the IPv6 Ethertype, TCP protocol,
Telnet port, and IPv6 source/destination ranges. The final rule permits all remaining traffic, matching nothing
in particular.

root@faucet:/etc/faucet# cat acls.yaml

---

acls:

R1_INBOUND:

# Deny all IPv4 traffic (because we are 'next-gen')

- rule:

dl_type: 0x0800

actions:

allow: false

# Prevent users from using IPv6 Telnet to reach servers

- rule:

dl_type: 0x86dd

nw_proto: 6

tcp_dst: 23

ipv6_src: "2001:db8:1::/64" # R1 Users

ipv6_dst: "2001:db8:2::/64" # R2 Servers

actions:

allow: false

# Permit all other traffic

- rule:

actions:

allow: true

Copyright 2021 Nicholas Russo http://njrusmc.net 141

http://njrusmc.net


...

After making these changes, you must restart both Faucet and Gauge, in that order, for changes to take
effect. If OpenFlow devices have already established connectivity to Faucet, the SDN controller is smart
enough to update the devices with only the minimum number of rules to implement the desired policy. This
is useful because it preserves computing resources on the OpenFlow device while also minimizing any
micro-outages that occur during the rule reprogramming.

root@faucet:/etc/faucet# systemctl restart faucet

root@faucet:/etc/faucet# systemctl restart gauge

As a final step, be sure to record Faucet’s IPv4 address so that OVS can connect to it. Since our Faucet is
running in AWS as an EC2 instance, it has an elastic IP associated with it, and we can use curl to discover
Faucet’s public IP.

root@faucet:/etc/faucet# curl https://api64.ipify.org

34.207.175.9

To establish an OpenFlow connection to Faucet, OVS needs an IPv4 address. GNS3 allows you to pre-
configure the eth0 configuration by hand-editing the /etc/network/interfaces file as you’d normally do.
Simply uncomment the lines below to enable DHCP, allowing the internal GNS3 DHCP server to issue an
IPv4 address to OVS. GNS3 can also provide NAT service to OVS so that it can reach the Internet.

/ # grep eth0 /etc/network/interfaces

auto eth0

iface eth0 inet dhcp

To confirm that OVS has connectivity to Faucet, perform a ping test before trying to establish an OpenFlow
connection. This will help isolate a basic IP addressing or routing problem from an OpenFlow-specific
problem.

/ # ping -c 3 34.207.175.9

PING 34.207.175.9 (34.207.175.9): 56 data bytes

64 bytes from 34.207.175.9: seq=0 ttl=128 time=12.072 ms

64 bytes from 34.207.175.9: seq=1 ttl=128 time=63.384 ms

64 bytes from 34.207.175.9: seq=2 ttl=128 time=90.134 ms

--- 34.207.175.9 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 12.072/55.196/90.134 ms

Next, configure OVS so that it is able to connect to Faucet. The commands below are individually com-
mented to explain what they do. Most importantly, note that the br0 bridge is configured with DPID 1 to
match the Faucet configuration. This is how OVS identifies itself to Faucet.

# Remove eth0 from br0; used for connection to faucet

ovs-vsctl del-port br0 eth0

# Delete unnecessary bridges; created with GNS3 OVS appliance

ovs-vsctl del-br br1

ovs-vsctl del-br br2

ovs-vsctl del-br br3

# Identify DP ID; must match "dp_id: 0x1" in faucet.yaml

ovs-vsctl set bridge br0 other-config:datapath-id=0000000000000001

# Management should only be out-of band for cleanliness

ovs-vsctl set bridge br0 other-config:disable-in-band=true

# If controllers fail, OVS stops forwarding (no autonomous failover)

ovs-vsctl set bridge br0 fail_mode=secure

Copyright 2021 Nicholas Russo http://njrusmc.net 142

http://njrusmc.net


# TCP 6653 to faucet; actual SDN control and policy application

# TCP 6654 to gauge; read-only for metric collection, does not apply policy

ovs-vsctl set-controller br0 tcp:34.207.175.9:6653 tcp:34.207.175.9:6654

None of the commands above provide any output (unless they fail). To verify OpenFlow connectivity, use the
ovs-vsctl show command. The command does not reveal everything, but does confirm that the OpenFlow
connections to Faucet (6653) and Gauge (6654) are functional.

/ # ovs-vsctl show

5fbd00bd-6899-49ab-bb89-38f247ac6b6b

Bridge "br0"

Controller "tcp:34.207.175.9:6654"

is_connected: true

Controller "tcp:34.207.175.9:6653"

is_connected: true

fail_mode: secure

Port "br0"

Interface "br0"

type: internal

Port "eth1"

Interface "eth1"

Port "eth2"

Interface "eth2"

(snip, more interfaces)

Everything should be working at this point. We can assume that the OpenFlow controller has sent down
the proper ruleset to OVS once the OSPFv3 neighbors formed between R1 and R2 as shown below. Both
routers have OSPFv3-learned IPv6 routes to one another’s Loopback (LAN simulation) networks, as ex-
pected.

R1#show ospfv3 ipv6 neighbor | begin ^Neighbor

Neighbor ID Pri State Dead Time Interface ID Interface

10.1.2.2 0 FULL/ - 00:00:33 5 Ethernet0/1

R1#show ipv6 route ospf | begin ^O

O 2001:DB8:2::2/128 [110/10]

via FE80::2, Ethernet0/1

R2#show ospfv3 ipv6 neighbor | begin ^Neighbor

Neighbor ID Pri State Dead Time Interface ID Interface

10.1.2.1 0 FULL/ - 00:00:33 4 Ethernet0/2

R2#show ipv6 route ospf | begin ^O

O 2001:DB8:1::1/128 [110/10]

via FE80::1, Ethernet0/2

Next, let’s ensure that the ACL works correctly. Trying to ping R2’s IPv4 address across OVS fails, even
though the ARP resolution succeeds. This is a clear indication that IPv4 ARP traffic (Ethernet 0x0806) is
permitted while actual IPv4 traffic (Ethernet 0x0800) is not. In a real IPv6-only environment, you’d probably
block IPv4 ARP as well. The author left it enabled just to highlight how granular the ACL ruleset can be.

R1#ping 10.1.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.2, timeout is 2 seconds:

.....

Success rate is 0 percent (0/5)

R1#show arp

Protocol Address Age (min) Hardware Addr Type Interface

Copyright 2021 Nicholas Russo http://njrusmc.net 143

http://njrusmc.net


Internet 10.1.2.1 - aabb.cc00.0110 ARPA Ethernet0/1

Internet 10.1.2.2 1 aabb.cc00.0220 ARPA Ethernet0/1

Next, let’s attempt to Telnet from a simulated user to a simulated server using IPv6. We expect this to time
out as it is dropped by the ACL. On the other hand, OSPFv3 is already working between R1 and R2 link-
local addresses, so clearly IPv6 is not blocked entirely. Ping traffic between R1 and R2 loopbacks works as
expected while Telnet is blocked.

R1#telnet 2001:db8:2::2 /source-interface Loopback0

Trying 2001:DB8:2::2 ...

> Connection timed out; remote host not responding

R1#ping 2001:db8:2::2 source Loopback0

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2001:DB8:2::2, timeout is 2 seconds:

Packet sent with a source address of 2001:DB8:1::1

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/5/7 ms

When troubleshooting OpenFlow, OVS provides many useful (but hard to read) commands. You can exam-
ine the flow table using ovs-ofctl dump-flows br0 as shown below. For readability, the author has deleted
many low-relevance fields, such as the hexademical cookie, table ID, and more. These are important, low-
level details but are beyond the scope of this book. Individual flow entries have been been spread across
multiple lines for additional brevity. The table is ordered by priority with higher values taking precedence,
which means more specific ACL entries are correctly processed first. The first two entries have logged the
dropped IPv4 and IPv6 Telnet attempts. Then, there is an entry that matches all IPv6 multicast traffic with a
destination MAC address beginning with 33:33. Traffic with this destination will have its VLAN stripped and
flooded out of ports 2 and 3, which correspond to eth1 (to R1) and eth2 (to R2), respectively. The final flow
with the lowest priority permits all other traffic.

/ # ovs-ofctl dump-flows br0

# Drops all IPv4

n_packets=5, n_bytes=570, idle_age=972,priority=20480,ip,in_port=2

actions=drop

# Drops IPv6 Telnet from user to server VLAN

n_packets=2, n_bytes=156, idle_age=888, priority=20479,

tcp6,in_port=2,ipv6_src=2001:db8:1::/64,ipv6_dst=2001:db8:2::/64,tp_dst=23

actions=drop

# Allows IPv6 multicast (dynamic entry; there are more like this)

n_packets=245, n_bytes=23038, idle_age=5,priority=8208,

dl_vlan=12,dl_dst=33:33:00:00:00:00/ff:ff:00:00:00:00

actions=strip_vlan,output:2,output:3

# Permit all other traffic

n_packets=4, n_bytes=308, idle_age=522,priority=8192,dl_vlan=12

actions=strip_vlan,output:2,output:3

As mentioned earlier, the Faucet installation comes with Grafana as well. This is used to display metrics
collected by Prometheus, which monitors the local controller, and Gauge, which collects port statistics from
remote OpenFlow devices. The screenshot below is an example of a dashboard used to track connected
OpenFlow devices. Our demonstration used a single OVS instance named “sw1” with a DPID of 1.

Copyright 2021 Nicholas Russo http://njrusmc.net 144

http://njrusmc.net


Figure 51: Grafana Inventory Dashboard

Faucet also supplies a pre-made dashboard for reviewing Gauge-collected port statistics. The image below
shows the traffic across OVS in a relatively steady state. Because Faucet and OVS do not have GUIs by
which they can be managed, Grafana serves as a useful substitute for performance monitoring.

Figure 52: Grafana Port Statistics Dashboard

The “first time” Faucet tutorial discussed earlier provides links to these dashboards for those interested in
exploring them.

2.4 Configuration management tools and version control systems

This section discussions a variety of configuration management tools, typically ones that enable “infrastruc-
ture as code”. It also contains specific version control systems with a high level comparison to help coders
decide which is best for them.

2.4.1 Agent-based Summary

Management agents are typically on-box, add-on software components that allow an automation, orches-
tration, or monitoring tool to communicate with the managed device. The agent exposes an API that would
have otherwise not been available. On the topic of monitoring, the agents allow the device to report traf-
fic conditions back to the controller (telemetry). Given this information, the controller can sense (or, with
analytics, predict) congestion, route around failures, and perform all manner of fancy traffic-engineering as

Copyright 2021 Nicholas Russo http://njrusmc.net 145

http://njrusmc.net


required by the business applications. Many of these agents perform the same general function as SNMP
yet offer increased flexibility and granularity as they are programmable.

Agents could also be used for non-management purposes. Interface to the Routing System (I2RS) is an
SDN technique where a specific control-plane agent is required on every data-plane forwarder. This agent is
effectively the control-plane client that communicates northbound towards the controller. This is the channel
by which the controller consults its RIB and populates the FIB of the forwarding devices. The same is true
for OpenFlow (OF) which is a fully centralized SDN model. The agent can be considered an interface to a
data-plane forwarder for a control-plane SDN controller.

A simple categorization method is to quantify management strategies as “agent based” or “agent-less
based”. Agent is pull-based, which means the agent connects with master. Changes made on master
are pulled down when agent is “ready”. This can be significant since if a network device is currently experi-
encing a microburst, the management agent can wait until the contention abates before passing telemetry
data to the master. Agent-less is push-based like SNMP traps, where the triggering of an event on a net-
work device creates a message for the controller in unsolicited fashion. The other direction also holds true;
a master can use SSH to access a device for programming whenever the master is “ready”.

Although not specific to “agents”, there are several common applications/frameworks that are used for
automation. Some of them rely on agents while others do not. Three of them are discussed briefly below
as these are found in Cisco’s NX-OS DevNet Network Automation Guide. Note that subsets of the exact
definitions are added here. Since these are third-party products, the author does not want to misrepresent
the facts or capabilities as understood by Cisco.

1. Puppet (by Puppet Labs): The Puppet software package is an open source automation toolset for
managing servers and other resources by enforcing device states, such as configuration settings.
Puppet components include a puppet agent which runs on the managed device (client) and a puppet
master (server) that typically runs on a separate dedicated server and serves multiple devices. The
Puppet master compiles and sends a configuration manifest to the agent. The agent reconciles this
manifest with the current state of the node and updates state based on differences. A puppet manifest
is a collection of property definitions for setting the state on the device. Manifests are commonly used
for defining configuration settings, but they can also be used to install software packages, copy files,
and start services.

In summary, Puppet is agent-based (requiring software installed on the client) and pushes complex
data structures to managed nodes from the master server. Puppet manifests are used as data struc-
tures to track node state and display this state to the network operators. Puppet is not commonly
used for managing Cisco devices as most Cisco products, at the time of this writing, do not support
the Puppet agent. The following products support Puppet today:

(a) Cisco Nexus 7000 and 7700 switches running NX-OS 7.3(0)D1(1) or later

(b) Cisco Nexus 9300, 9500, 3100, and 300 switches running NX-OS 7.3(0)I2(1) or later

(c) Cisco Network Convergence System (NCS) 5500 running IOS-XR 6.0 or later

(d) Cisco ASR9000 routers running IOS-XR 6.0 or later

2. Chef (by Chef Software): Chef is a systems and cloud infrastructure automation framework that
deploys servers and applications to any physical, virtual, or cloud location, no matter the size of the
infrastructure. Each organization is comprised of one or more workstations, a single server, and
every node that will be configured and maintained by the chef-client. A cookbook defines a scenario
and contains everything that is required to support that scenario, including libraries, recipes, files,
and more. A Chef recipe is a collection of property definitions for setting state on the device. While
recipes are commonly used for defining configuration settings, they can also be used to install software
packages, copy files, start services, and more.

In summary, Chef is very similar to Puppet in that it requires agents and manages devices using
complex data structures. The concepts of cookbooks and recipes are specific to Chef (hence the

Copyright 2021 Nicholas Russo http://njrusmc.net 146

http://njrusmc.net


name) which contribute to a hierarchical data structure management system. A Chef cookbook is
loosely equivalent to a Puppet manifest. Like Puppet, Chef is not commonly used to manage Cisco
devices due to requiring the installation of an agent. The following products support Chef today:

(a) Cisco Nexus 7000 and 7700 switches running NX-OS 7.3(0)D1(1) or later

(b) Cisco Nexus 9300, 9500, 3100, and 300 switches running NX-OS 7.3(0)I2(1) or later

(c) Cisco Network Convergence System (NCS) 5500 running IOS-XR 6.0 or later

(d) Cisco ASR9000 routers running IOS-XR 6.0 or later

2.4.2 Agent-less Summary

The concept of agent-less software was briefly discussed in the previous section. Simply put, no special
client-side software is needed on the managed entity. This typically makes agent-less solutions faster to de-
ploy and easier to learn. The main drawback is their limited power and often lack of visibility, but since many
network devices deployed in production today do not support modern APIs (especially in small/medium
businesses), agent-less solutions can be quite popular. This section focuses on Ansible, a common task
execution engine for network devices.

1. Ansible (by Red Hat): Ansible is an open source IT configuration management and automation tool.
Unlike Puppet and Chef, Ansible is agent-less, and does not require a software agent to be installed
on the target node (server or switch) in order to automate the device. By default, Ansible requires
SSH and Python support on the target node, but Ansible can also be easily extended to use any API.
Ansible operators write most of their code in YAML, a format discussed earlier in the book.

2. Nornir (community product): Nornir has quite a lot in common with Ansible at a conceptual level.
It’s open source and agent-less, based on Python, and doesn’t usually require special software on
its managed targets. Nornir runbooks are written in Python. Unlike many other CM tools, Nornir was
written primarily for network automation.

In summary, agent-less tools tend to be lighter-weight than their agent-based counterparts. No custom
software needs to be installed on any device provided that it supports SSH. This can be a drawback since
individual device CLIs must be exposed to network operators (or, at best, the agent-less automation engine)
instead of using a more abstract API design. Ansible is very commonly used to manage Cisco network
devices as it requires no agent installation on the managed devices. Nornir is rapidly gaining popularity,
too. Any Cisco device that can be accessed using SSH can be managed by these agent-less tools. This
includes Cisco ASA firewalls, older Cisco ISRs, and older Cisco Catalyst switches.

2.4.3 Agent-less Demonstration with Ansible (SSH/CLI)

The author has deployed Ansible in production and is most familiar with Ansible when compared against
Puppet or Chef. This section will illustrate the value of automation using a simple but powerful playbook.
These tests were conducted on a Linux machine in Amazon Web Services (AWS) which was targeting a
Cisco CSR1000v. Before beginning, all of the relevant version information is shown below for reference.

RTR_CSR1#show version | include RELEASE

Cisco IOS Software, CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 15.5(3)S4a, RELEASE SOFTWARE (fc1)

[ec2-user@devbox ansible]# uname -a

Linux ip-10-125-0-100.ec2.internal 3.10.0-514.16.1.el7.x86_64 #1 SMP

Fri Mar 10 13:12:32 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

[ec2-user@devbox ansible]# ansible-playbook --version

ansible-playbook 2.3.0.0

config file = /etc/ansible/ansible.cfg

Copyright 2021 Nicholas Russo http://njrusmc.net 147

http://njrusmc.net


configured module search path = Default w/o overrides

python version = 2.7.5 (default, Aug 2 2016, 04:20:16) [GCC 4.8.5 20150623 (Red Hat 4.8.5-4)]

Ansible playbooks are collections of plays. Each play targets a specific set of hosts and contains a list of
tasks. In YAML, arrays/lists are denoted with a hyphen (-) character. The first play in the playbook begins
with a hyphen since it’s the first element in the array of plays. The play has a name, target hosts, and some
other minor options. Gathering facts can provide basic information like time and date, which are used in
this script. When connection: local is used, the python commands used with Ansible are executed on the
control machine (Linux) and not on the target. This is required for many Cisco devices being managed by
the CLI.

The first task defines a credentials dictionary. This contains transport information like SSH port (default is
22), target host, username, and password. The ios_config and ios_command modules, for example, re-
quire this to log into the device. The second task uses the ios_config module to issue specific commands.
The commands will specify the SNMPv3 user/group and update the auth/priv passwords for that user. For
accountability reasons, a timestamp is written to the configuration as well using the “facts” gathered earlier
in the play. Minor options to the ios_config module, such as save_when: always and match: none are
optional. The first option saves the configuration after the commands are issued while the second does not
care about what the router already has in its configuration. The commands in the task will forcibly overwrite
whatever is already configured; this is not typically done in production, but is done to illustrate a simple ex-
ample. The changed_when: false option tells Ansible to always report a status of ok rather than changed

which makes the script “succeed” from an operations perspective. The > operator is used in YAML to denote
folded text for readability, and the input is assumed to always be a string. This particular example is not
idempotent. Idempotent is a term used to describe the behavior of only making the necessary changes.
This implies that when no changes need to be made, the tool does nothing. Although considered a best
practice, achieving idempotence is not a prerequisite for creating effective Ansible playbooks.

[ec2-user@devbox ansible]# cat snmp.yml

---

- name: "Updating SNMPv3 pre-shared keys"

hosts: csr1

gather_facts: true

connection: local

tasks:

- name: "SYS >> Define router credentials"

set_fact:

CREDENTIALS:

host: "{{ inventory_hostname }}"

username: "ansible"

password: "ansible"

- name: "IOS >> Issue commands to update SNMPv3 passwords, save config"

ios_config:

provider: "{{ CREDENTIALS }}"

commands:

- >

snmp-server user {{ snmp.user }} {{ snmp.group }} v3 auth

sha {{ snmp.authpass }} priv aes 256 {{ snmp.privpass }}

- >

snmp-server contact PASSWORDS UPDATED

{{ ansible_date_time.date }} at {{ ansible_date_time.time }}

save_when: always

match: none

changed_when: false

...

The playbook above makes a number of assumptions that have not been reconciled yet. First, one should
verify that csr1 is defined and reachable. It is configured as a static hostname-to-IP mapping in the system

Copyright 2021 Nicholas Russo http://njrusmc.net 148

http://njrusmc.net


hosts file. Additionally, it is defined in the Ansible hosts file as a valid host. Last, it is valuable to ping the
host to ensure that it is powered on and responding over the network. The verification for all aforementioned
steps is below.

[ec2-user@devbox ansible]# grep csr1 /etc/hosts

10.125.1.11 csr1

[ec2-user@devbox ansible]# grep csr1 /etc/ansible/hosts

csr1

[ec2-user@devbox ansible]# ping csr1 -c 3

PING csr1 (10.125.1.11) 56(84) bytes of data.

64 bytes from csr1 (10.125.1.11): icmp_seq=1 ttl=255 time=3.41 ms

64 bytes from csr1 (10.125.1.11): icmp_seq=2 ttl=255 time=2.85 ms

64 bytes from csr1 (10.125.1.11): icmp_seq=3 ttl=255 time=2.82 ms

--- csr1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 2.821/3.028/3.411/0.278 ms

Next, Ansible needs to populate variables for things like snmp.user and snmp.group. Ansible is smart
enough to look for file names matching the target hosts in a folder called host_vars/ and automatically add
all variables to the play. These files are in YAML format and items can be nested as shown below. This
makes it easier to organize variables for different features. Some miscellaneous BGP variables are shown
in the file below even though our script doesn’t care about them. Note that if groups are used in the Ansible
hosts file, variable files can contain the names of those groups inside the group_vars/ directly for similar
treatment. Note that there are secure ways to deal with plain-text passwords with Ansible, such as Ansible
Vault. This feature is not demonstrated in this document.

[ec2-user@devbox ansible]# cat host_vars/csr1.yml

---

# Host variables for csr1

snmp:

user: USERV3

group: GROUPV3

authpass: ABC123

privpass: DEF456

bgp:

asn: 65021

rid: 192.0.2.1

...

The final step is to execute the playbook. Debugging is enabled so that the generated commands are
shown in the output below, which normally does not happen. Note that the variable substitution, as well
as the Ansible timestamp, appears to be working. The play contained three tasks, all of which succeed.
Although gather_facts didn’t look like a task in the playbook, behind the scenes the setup module was
executed on the control machine, which counts as a task.

[ec2-user@devbox ansible]# ansible-playbook snmp.yml -v

Using /etc/ansible/ansible.cfg as config file

PLAY [Updating SNMPv3 pre-shared keys] **************************************

TASK [Gathering Facts] ******************************************************

ok: [csr1]

TASK [SYS >> Define router credentials] *************************************

ok: [csr1] => {"ansible_facts": {"provider": {"host": "csr1",

"password": "ansible", "username": "ansible"}}, "changed": false}

Copyright 2021 Nicholas Russo http://njrusmc.net 149

http://njrusmc.net


TASK [IOS >> Issue commands to update SNMPv3 passwords, save config] ********

ok: [csr1] =>

{

"banners": {}, "changed": false, "commands":

[

"snmp-server user USERV3 GROUPV3 v3 auth sha ABC123 priv aes 256 DEF456",

"snmp-server contact PASSWORDS UPDATED 2017-05-07 at 18:05:27"

],

"updates":

[

"snmp-server user USERV3 GROUPV3 v3 auth sha ABC123 priv aes 256 DEF456",

"snmp-server contact PASSWORDS UPDATED 2017-05-07 at 18:05:27"

]

}

PLAY RECAP ******************************************************************

csr1 : ok=3 changed=0 unreachable=0 failed=0

To verify that the configuration was successfully applied, log into the target router to manually verify the
configuration. To confirm that the configuration was saved, check the startup-configuration manually as
well. The verification is shown below.

RTR_CSR1#show snmp contact

PASSWORDS UPDATED 2017-05-07 at 18:05:27

RTR_CSR1#show snmp user USERV3

User name: USERV3

Engine ID: 800000090300126BF529F95A

storage-type: nonvolatile active

Authentication Protocol: SHA

Privacy Protocol: AES256

Group-name: GROUPV3

RTR_CSR1#show startup-config | include contact

snmp-server contact PASSWORDS UPDATED 2017-05-07 at 18:05:27

This simple example only scratches the surface of Ansible. The author has written a comprehensive OSPF
troubleshooting playbook which is simple to set up, executes quickly, and is 100% free. The link to the
Github repository where this playbook is hosted is provided below, and in the references section. There are
many other, unrelated Ansible playbooks available at the author’s Github page as well.

Nick’s OSPF TroubleShooter (nots) — https://github.com/nickrusso42518/nots

2.4.4 NETCONF-based Infrastructure as Code with Ansible

Earlier sections of this book introduced NETCONF, both as a protocol and integrated into a Python pro-
grammability demonstration. Ansible can also utilize NETCONF for managing network devices, and this is
quickly becoming a common infrastructure-as-code alternative to legacy SSH/CLI administration.

This demonstration will solve the same problem as my popular open-source vpnm repository available on
Github. The playbook ensures that the correct MPLS layer-3 VPN route-targets are configured, intelligently
adding and removing import and export route-targets where needed. The playbook above is SSH/CLI
based, which makes it universally consumable by devices of any age, but is quite complex to understand
and maintain. Using NETCONF, operators can simplify the maintenance of their desired state.

Ansible allows for any arbitrary NETCONF RPC calls using the netconf_rpc module, but effectively using
this module is tricky. The author recommends first trying netconf_get and netconf_config modules for
read and write operations, respectively, and falling back to netconf_rpc for more customized actions if the

Copyright 2021 Nicholas Russo http://njrusmc.net 150

https://github.com/nickrusso42518/nots
https://github.com/nickrusso42518/vpnm
http://njrusmc.net


wrapper modules don’t work.

Presumably, readers already have some familiarity with Ansible at this point, so some details are omitted.
The variables file contains a list of VRFs that should exist on a target router, such as an MPLS provider
edge (PE). Each item in the list is a dictionary, which contains two keys of interest, route_import and
route_export. These are lists of strings where each element is a route-target. If an RT is present in
this list, it will be present on the device. If an RT is absent from this list, it will be removed from the device.
Operators can determine RT membership simply by editing this file and running the Ansible playbook, which
is how infrastructure as code is supposed to work.

---

# host_vars/csr1.yml

vrfs:

- name: "VPN1"

description: "FIRST VRF"

rd: "1:1"

route_import:

- "100:1"

route_export:

- "100:2"

- name: "VPN2"

description: "SECOND VRF"

rd: "2:2"

route_import:

- "200:1"

- "200:2"

route_export: []

Let’s explore the playbook next to see how the modules are used. Thankfully, Ansible makes this very easy.
All the operator must do is specify the XML text to pass in. Coming up with the XML can be challenging, but
we will visit that soon. For now, assume that we “just know” it. Just like using jinja2 for plain-text templating,
it works well for XML templates, too.

---

# nc_update.yml

- name: "Infrastructure-as-code using NETCONF"

hosts: routers

connection: netconf

tasks:

- name: "Update VRF config with NETCONF from XML template"

netconf_config:

content: "{{ lookup('template', 'templates/vpn.j2') }}"

Admittedly, the template is the most complex part of the solution, but such is the price (sometimes) paid for
having nicely structured data. This structure is based on the “native” YANG model, as opposed to something
like OpenConfig, so that needs to be specified. Notice the jinja2 for loops. The outer loop iterates over
each VRF, creating a new <definition> block for each. Basic data, such as name, description, and
rd are applied for each VRF. Then, a pair of nested for loops iterate over the export and import route
targets, adding the appropriate XML blocks for each one. As such, the size and composition of the template
changes every time the operator changes the “desired state” in the YAML variables files.

<config>

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<vrf operation="replace">

{% for vrf in vrfs %}

<definition>

<name>{{ vrf.name }}</name>

<description>{{ vrf.description }}</description>

<rd>{{ vrf.rd }}</rd>

<address-family>

Copyright 2021 Nicholas Russo http://njrusmc.net 151

http://njrusmc.net


<ipv4/>

<ipv6/>

</address-family>

<route-target>

{% for rte in vrf.route_export %}

<export>

<asn-ip>{{ rte }}</asn-ip>

</export>

{% endfor %}

{% for rti in vrf.route_import %}

<import>

<asn-ip>{{ rti }}</asn-ip>

</import>

{% endfor %}

</route-target>

</definition>

{% endfor %}

</vrf>

</native>

</config>

First, check the router configuration. There are no VRFs on the device at all. Be sure netconf-yang is
enabled, not netconf, in order for this technology to work correctly.

CSR1#show vrf

[no output]

CSR1#show running-config | include netconf-yang

netconf-yang

Next, run the playbook. Notice that the system reports changed. At present, the author cannot find an
obvious way to report exactly what changed, but these modules are rather new and are likely to be updated
over time. At least we know that a change was made, and in Ansible land, that means notifying handlers
and other useful activities.

[centos@devbox netconf]# ansible-playbook nc_update.yml

PLAY [Infrastructure-as-code using NETCONF] *******************************

TASK [Update VRF config with NETCONF] *************************************

changed: [csr1]

PLAY RECAP ****************************************************************

csr1 : ok=1 changed=1 unreachable=0 failed=0

Run the playbook once more and the task reports ok, implying that there were no necessary changes since
the state did not change.

[centos@devbox netconf]# ansible-playbook nc_update.yml

PLAY [Infrastructure-as-code using NETCONF] *******************************

TASK [Update VRF config with NETCONF] *************************************

ok: [csr1]

PLAY RECAP ****************************************************************

csr1 : ok=1 changed=0 unreachable=0 failed=0

Using SSH, log into the router’s CLI and check the VRF configuration. Notice that both VPNs have the
exactly correct VPN configuration. Any changes to this configuration will be reverted anytime the playbook
runs again.

Copyright 2021 Nicholas Russo http://njrusmc.net 152

http://njrusmc.net


CSR1#show running-config | section vrf_definition

vrf definition VPN1

description FIRST VRF

rd 1:1

route-target export 100:1

route-target import 100:2

!

address-family ipv4

exit-address-family

!

address-family ipv6

exit-address-family

vrf definition VPN2

description SECOND VRF

rd 2:2

route-target import 200:1

route-target import 200:2

!

address-family ipv4

exit-address-family

!

address-family ipv6

exit-address-family

Let’s grab the current VRF configuration using NETCONF. This is how the author grabbed the initial XML
snippet to build the jinja2 template above. Another approach could be converting the native YANG model
to XML using pyang or something like it. This playbook is a little more involved since there are some post-
processing steps needed to beautify the XML for human readability and write it to disk. Using the filter

option with netconf_get can limit the output just to a certain section, in this case, just VRFs. Omitting this
option captures the entire configuration.

---

# nc_get.yml

- name: "Update VRF state via NETCONF"

hosts: routers

connection: netconf

tasks:

- name: "Get VRF config with NETCONF"

netconf_get:

source: running

lock: always

filter: "<native><vrf></vrf></native>"

register: nc_vrf

- name: "Format XML for easy viewing"

xml:

xmlstring: "{{ nc_vrf.stdout }}"

pretty_print: true

register: pretty_config

changed_when: false

- name: "Ensure vrf_configs/ folder exists"

file:

path: "{{ playbook_dir }}/vrf_configs"

state: directory

- name: "Write XML to disk"

copy:

content: "{{ pretty_config.xmlstring }}"

Copyright 2021 Nicholas Russo http://njrusmc.net 153

http://njrusmc.net


dest: "vrf_configs/{{ inventory_hostname }}_netconf.xml"

Running this playbook grabs the VRF configuration as represented by YANG and encoded as XML data.

[centos@devbox netconf]# ansible-playbook nc_get.yml

PLAY [Update VRF state via NETCONF] **********************************

TASK [Get VRF config with NETCONF] ****************************************

ok: [csr1]

TASK [Format XML for easy viewing] ****************************************

ok: [csr1]

TASK [Ensure vrf_configs/ folder exists] **********************************

ok: [csr1]

TASK [Write XML to disk] **************************************************

changed: [csr1]

PLAY RECAP ****************************************************************

csr1 : ok=4 changed=1 unreachable=0 failed=0

Look at the contents of the file to see how the pieces fit together. Also notice how the proper route-target
state is in place. The ns numbering is referencing XML namespaces, which like programming names-
paces, can provide uniqueness when same-named constructs are referenced from a single program. The
namespaces shouldn’t be included when building XML templates, though. Administrators can use these
NETCONF captures as a way of doing configuration state backups also.

[centos@devbox netconf]# cat vrf_configs/csr1_netconf.xml

<?xml version='1.0' encoding='UTF-8'?>

<ns0:data xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0"

xmlns:ns1="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<ns1:native>

<ns1:vrf>

<ns1:definition>

<ns1:name>VPN1</ns1:name>

<ns1:description>FIRST VRF</ns1:description>

<ns1:rd>1:1</ns1:rd>

<ns1:address-family>

<ns1:ipv4/>

<ns1:ipv6/>

</ns1:address-family>

<ns1:route-target>

<ns1:export>

<ns1:asn-ip>100:2</ns1:asn-ip>

</ns1:export>

<ns1:import>

<ns1:asn-ip>100:1</ns1:asn-ip>

</ns1:import>

</ns1:route-target>

</ns1:definition>

<ns1:definition>

<ns1:name>VPN2</ns1:name>

<ns1:description>SECOND VRF</ns1:description>

<ns1:rd>2:2</ns1:rd>

<ns1:address-family>

<ns1:ipv4/>

<ns1:ipv6/>

Copyright 2021 Nicholas Russo http://njrusmc.net 154

http://njrusmc.net


</ns1:address-family>

<ns1:route-target>

<ns1:import>

<ns1:asn-ip>200:1</ns1:asn-ip>

</ns1:import>

<ns1:import>

<ns1:asn-ip>200:2</ns1:asn-ip>

</ns1:import>

</ns1:route-target>

</ns1:definition>

</ns1:vrf>

</ns1:native>

</ns0:data>

2.4.5 RESTCONF-based Infrastructure as Code with Ansible

Suppose you love the idea of using something better than SSH/CLI but find the XML templating within
NETCONF to be rather confusing. While it is possible to write some kind of translation from YAML/JSON
Ansible variables directly into XML, this would be rather complex for the average network automation engi-
neer. RESTCONF offers an alternative. Using Ansible’s generic uri module to run HTTP-based operations
on network devices, operators can pass variables directly into the message body of an HTTP PUT to con-
figure a device as JSON data.

The variables structure has to change a bit to fit the YANG model we saw above, except using YAML (or
JSON) formatting. I’ll use YAML for brevity, and assuming operators are willing to restructure the state
variables files, this data can be passed straight into uri by referencing the topmost dictionary key of vrfs
from the body option.

---

# host_vars/csr1.yml

vrfs:

vrf:

definition:

- name: "VPN1"

description: "FIRST VRF"

rd: "1:1"

address-family:

ipv4: {}

ipv6: {}

route-target:

export:

- asn-ip: "100:2"

import:

- asn-ip: "100:1"

- name: "VPN2"

description: "SECOND VRF"

rd: "2:2"

address-family:

ipv4: {}

ipv6: {}

route-target:

import:

- asn-ip: "200:1"

- asn-ip: "200:2"

Next, examine the playbook. Like NETCONF, there is only one task to perform the update. This module
requires quite a bit more data, including login information given connection: local at the play level. The
other fields help construct the correct HTTP headers needed to configure the device via RESTCONF. There
are no jinja2 templates required at all.

Copyright 2021 Nicholas Russo http://njrusmc.net 155

http://njrusmc.net


---

# rc_update.yml

- name: "Infrastructure-as-code using RESTCONF"

hosts: routers

connection: local

tasks:

- name: "Update VRF config with HTTP PUT"

uri:

# YAML folded syntax won't work here, shown for readability only

url: >-

https://{{ ansible_host }}/restconf/data/

Cisco-IOS-XE-native:native/Cisco-IOS-XE-native:vrf

user: "ansible"

password: "ansible"

method: PUT

headers:

Content-Type: "application/yang-data+json"

Accept: "application/yang-data+json, application/yang-data.errors+json"

body_format: json

body: "{{ vrfs }}"

validate_certs: false

return_content: true

status_code:

- 200 # OK

- 204 # NO CONTENT

The device has no VRFs on it, just like before. RESTCONF will add them. Be sure restconf is enabled!

CSR1#show vrf

[no output]

CSR1#show running-config | include restconf

restconf

Run the playbook, and notice that the task reports ok. Like NETCONF, RESTCONF is idempotent and easy
to program using Ansible. Unlike NETCONF, there is no notification in the HTTP response message that
indicates whether a change was made or not. This could be problematic if there are handlers requiring
notification, but often times is not a big issue. Administrators can see if changes were made using an HTTP
GET operation which is coming up next. It is possible that Cisco will update their RESTCONF API to include
this in the future.

[centos@devbox restconf]# ansible-playbook rc_update.yml

PLAY [Infrastructure-as-code using RESTCONF] ******************************

TASK [Update VRF config with HTTP PUT] ************************************

ok: [csr1]

PLAY RECAP ****************************************************************

csr1 : ok=1 changed=0 unreachable=0 failed=0

Quickly check the VRF configuration on the CLI to ensure it matches the declarative state from the variables
file. This output should be identical to the output what NETCONF returned, since both methods do the exact
same thing.

CSR1#show run | section vrf definition

vrf definition VPN1

description FIRST VRF

rd 1:1

route-target export 100:2

route-target import 100:1

!

Copyright 2021 Nicholas Russo http://njrusmc.net 156

http://njrusmc.net


address-family ipv4

exit-address-family

!

address-family ipv6

exit-address-family

vrf definition VPN2

description SECOND VRF

rd 2:2

route-target import 200:1

route-target import 200:2

!

address-family ipv4

exit-address-family

!

address-family ipv6

exit-address-family

In case operators don’t know what the correct data structure looks like, use the uri module again for the
HTTP GET operation. The playbook below allows operators to execute an HTTP GET, collect data, and
write it to a file. It doesn’t require quite as much post-processing as XML since Ansible can beautify JSON
rather easily.

---

# rc_get.yml

- name: "Collect VRF config with RESTCONF"

hosts: routers

connection: local

- name: "Get VRF config with RESTCONF"

uri:

# YAML folded syntax won't work here, shown for readability only

url: >-

https://{{ ansible_host }}/restconf/data/

Cisco-IOS-XE-native:native/Cisco-IOS-XE-native:vrf

user: "{{ ansible_user }}"

password: "{{ ansible_password }}"

method: GET

return_content: true

headers:

Accept: 'application/yang-data+json'

validate_certs: false

register: rc_vrf

- name: "Ensure vrf_configs/ folder exists"

file:

path: "{{ playbook_dir }}/vrf_configs"

state: directory

- name: "Write JSON to disk"

copy:

content: "{{ rc_vrf.json | to_nice_json }}"

dest: "vrf_configs/{{ inventory_hostname }}_restconf.json"

Quickly run the playbook to gather the current VRF state and store it as a JSON file.

[centos@devbox restconf]# ansible-playbook rc_get.yml

PLAY [Collect VRF config with RESTCONF] ***********************************

TASK [Get VRF config with RESTCONF] ***************************************

ok: [csr1]

Copyright 2021 Nicholas Russo http://njrusmc.net 157

http://njrusmc.net


TASK [Ensure vrf_configs/ folder exists] **********************************

ok: [csr1]

TASK [Write JSON to disk] *************************************************

changed: [csr1]

PLAY RECAP ****************************************************************

csr1 : ok=3 changed=1 unreachable=0 failed=0

Check the contents of the file to see the JSON returned from RESTCONF. Operators can use this as their
variables template starting point. Simply modify this JSON structure, optionally converting to YAML first if
that is easier, and pass the result into Ansible to manage your infrastructure as code using JSON instead
of CLI commands.

[centos@devbox restconf]# cat vrf_configs/csr1_restconf.json

{

"Cisco-IOS-XE-native:vrf": {

"definition": [

{

"address-family": {

"ipv4": {},

"ipv6": {}

},

"description": "FIRST VRF",

"name": "VPN1",

"rd": "1:1",

"route-target": {

"export": [

{

"asn-ip": "100:2"

}

],

"import": [

{

"asn-ip": "100:1"

}

]

}

},

{

"address-family": {

"ipv4": {},

"ipv6": {}

},

"description": "SECOND VRF",

"name": "VPN2",

"rd": "2:2",

"route-target": {

"import": [

{

"asn-ip": "200:1"

},

{

"asn-ip": "200:2"

}

]

}

}

Copyright 2021 Nicholas Russo http://njrusmc.net 158

http://njrusmc.net


]

}

}

2.4.6 Agent-less Demonstration with Nornir

Nornir is an open source project created by David Barroso and is maintained by several well-known net-
work programmability experts. Nornir uses many common, open-source projects under the hood, such as
textfsm, NAPALM, and netmiko. This makes it easily consumable by organizations already using these
libraries for other purposes. Nornir was formerly known as Brigade and is a task execution engine, like
Ansible, with a few key differences:

1. No domain specific language (DSL). Yes, Nornir makes you write Python, while Ansible lets you write
simpler YAML. Doing simple things is easy in DSL, but complex hard things is extremely challenging.
Even moderately complex nested iteration requires multiple files in Ansible, but doing so in Python is
trivial. With Nornir, you get pure Python without complex integrations via DSL.

2. Python debugger (pdb) works natively, simplifying debugging. In Ansible, your best tools are verbosity
options from the shell (i.e. ansible-playbook test.yml -vvv) or the debug module, neither of which
have the power of pdb.

3. The number of supplemental Python support tools (such as pylint, bandit, and black) is enormous.
These can easily be leveraged for Nornir runbook maintenance, typically within CI/CD pipelines.

4. Nornir tends to be faster than Ansible, given that it does not need to serialize/deserialize between
YAML/JSON and Python continuously. More data referenced within Ansible means more processing
time, and thus slower execution.

Because the author has extensive experience with Ansible across a variety of production use cases, com-
parisons between Nornir and Ansible are common throughout this section. Given Ansible’s popularity and
market penetration at the time of this writing, it is likely that readers will be able to compare and contrast,
too.

Installing Nornir is simple using pip. The author recommends using Python 3.6 or newer and Nornir 2.0.0
or newer. The Linux and Cisco CSR1000v versions are the same as those shown in the previous Ansible
demonstration, and thus are not repeated.

[ec2-user@devbox ~]# python3 --version

Python 3.6.5

[ec2-user@devbox ~]# python3 -m pip install nornir

[snip, installation output]

[ec2-user@devbox nornir-test]# python3 -m pip list | grep nornir

nornir (2.0.0)

Nornir is comprised of several main components. First, an optional configuration file is used to specify
global parameters, typically default settings for the execution of Nornir runbooks, which can simplify Nornir
coding later. The same concept exists in Ansible. Exploring the configuration file is not terribly important to
understanding Nornir basics and is not covered in this demonstration.

Also like Ansible, Nornir supports robust options for managing inventory, which is a collection of hosts and
groups. Nornir can even consume existing Ansible inventories for those looking to migrate from Ansible to
Nornir. The inventory file is called hosts.yaml and is required when using Nornir’s default inventory plugin.
The groups file is called groups.yaml and is optional, though often used. Many more advanced inventory
options exist, but this demonstration uses the “simple” inventory method, which is the default.

The simplest possible hosts.yaml file is shown below. There are many other minor options for host fields,
such as a site identifier, role, and group list. This demonstration uses only a single CSR1000v, named as
such in the inventory as a top level key. The variables specific to this host are the subways listed under it.

Copyright 2021 Nicholas Russo http://njrusmc.net 159

https://twitter.com/dbarrosop/
http://njrusmc.net


---

# hosts.yaml

csr1000v:

hostname: "csr1000v.lab.local" # or IP address

username: "cisco"

password: "cisco"

platform: "ios"

For the sake of a more interesting example, consider the case of multiple CSR1000v routers with the same
login information. Copy/pasting host-level variables such as usernames and passwords is undesirable,
especially at scale, so using group-level variables via groups.yaml is a better design. Each CSR is assigned
to group csr which contains the common login information as group-level variables. While the format differs
from Ansible’s YAML inventory, the general logic of data inheritance is the same. More generic variable
definitions, such as group variables, can be overridden on a per-host basis if necessary.

---

# hosts.yaml

csr1000v_1:

hostname: "172.16.1.1"

groups: ["csr"]

csr1000v_2:

hostname: "172.16.1.2"

groups: ["csr"]

csr1000v_3:

hostname: "172.16.1.3"

groups: ["csr"]

csr1000v_4:

hostname: "172.16.1.4"

groups: ["csr"]

---

# groups.yaml

csr:

username: "cisco"

password: "cisco"

platform: "ios"

The demonstration below is a simple runbook from Patrick Ogenstad, one of the Nornir developers. The
author has adapted it slightly to fit this book’s format and added comments to briefly explain each step. The
Python file below is named get_facts_ios.py.

from nornir import InitNornir

from nornir.plugins.tasks.networking import napalm_get

from nornir.plugins.functions.text import print_result

# Initialize a Nornir object.

nr = InitNornir()

# Execute a task against the hosts defined in the inventory.

# Specifically, gather basic router facts using NAPALM getters

# behind the scenes, much like Ansible's "ios_facts" module.

facts = nr.run(

napalm_get,

getters=['get_facts'])

# Pretty-print the result to stdout in a colorful JSON-style format.

print_result(facts)

Running this code yields the following output. Like Ansible, individual tasks are printed in easy-to-delineate
stanzas which contains specific output from that task. Here, the data returned by the device is printed,

Copyright 2021 Nicholas Russo http://njrusmc.net 160

https://twitter.com/networklore
http://njrusmc.net


along with many of the dictionary keys needed to access individual fields, if necessary. This simple method
is great for troubleshooting but often times, programmers will have to perform specific actions on specific
pieces of data.

[ec2-user@devbox nornir-test]# python3 get_facts_ios.py

napalm_get**************************************************************

* csr1000v ** changed : False ******************************************

vvvv napalm_get ** changed : False vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO

{ 'get_facts': { 'fqdn': 'CSR1000v.ec2.internal',

'hostname': 'CSR1000v',

'interface_list': ['GigabitEthernet1', 'VirtualPortGroup0'],

'model': 'CSR1000V',

'os_version': 'Virtual XE Software '

'(X86_64_LINUX_IOSD-UNIVERSALK9-M), Version '

'16.9.1, RELEASE SOFTWARE (fc2)',

'serial_number': '9RJTDVAF3DP',

'uptime': 5160,

'vendor': 'Cisco'}}

^^^^ END napalm_get ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The result object is a key component in Nornir, albeit a complex one. The general structure is as fol-
lows, shown in pseudo-YAML format with some minor technical inaccuracies intentionally. This quick visual
indication can help those new to Nornir to understand the general structure of data returned by a Nornir
run.

result_from_nornir:

host1:

- task1:

other_stuff1: interesting values here

other_stuff2: ...

more_details_a: ...

more_details_b: ...

- task2: ...

host2:

- task1: ...

- task2: ...

More accurately, the result_from_nornir is not a pure dictionary but is a dict-like object called AggregatedResult,
which combines all of the results across all hosts. Each host is referenced by hostname as a dictionary key,
which returns a MultiResult object. This is a list-like structure which can be indexed by integer, iterated
over, sliced, etc. The elements of these lists are Result objects which contain extra interesting data that
is accessible from a given task. This extra interesting data is wrapped in a dictionary which is accessible
through the result attribute of the object, NOT indexable as a dictionary key. The pseudo-YAML below is
slightly more accurate in showing the object structure used for Nornir results.

AggregatedResult:

MultiResult:

- Result:

changed: !!bool

failed: !!bool

name: !!str

result:

specific_field1: ...

specific_field2: ...

- Result: ...

MultiResult:

- Result: ...

- Result: ...

Copyright 2021 Nicholas Russo http://njrusmc.net 161

http://njrusmc.net


If this seems tricky, it is, and the demonstration below helps explain it. Without digging into the source code
of these custom objects, one can use the Python debugger (pdb) to do some basic discovery. This under-
standing makes programmatically accessing individual fields easier, which Nornir automatically parses and
stores as structured data. Simply add this line of code to the end of the Python script above. This is the
programming equivalent of setting a breakpoint; Python calls them traces.

import pdb; pdb.set_trace()

After running the code and seeing the pretty JSON output displayed, a (Pdb) prompt waits for user input.
Mastering pdb is outside the scope of this book and we will not be exploring pdb-specific commands in any
depth. What pdb enables is a real-time Python command line environment, allowing us to inject arbitrary
code at the trace. Just type facts to start, the name of the object returned by the Nornir run. This alone
reveals a fair amount of information.

(Pdb) facts

AggregatedResult (napalm_get): {'csr1000v': MultiResult: [Result: "napalm_get"]}

First, the facts object is an AggregatedResult, a dict-like object as annotated by the curly braces with
key:value mappings inside. It has one key called csr1000v, the name of our test host. The value of this
key is a MultiResult object which is a list-like structure as annotated by the [square brackets]. Thus,
pdb should indicate that facts['csr1000v'] returns a MultiResult object, which contains a Result object
named napalm_get.

(Pdb) facts['csr1000v']

MultiResult: [Result: "napalm_get"]

Since there was only 1 task that Nornir ran (getting the IOS facts), the length of this list-like object should
be 1. Quickly test that using the Python len() function.

(Pdb) len(facts['csr1000v'])

1

Index the task results manually by using the [0] index method. This is yields a Result object, which is
neither list-like nor dict-like.

(Pdb) facts['csr1000v'][0]

Result: "napalm_get"

The Result object has some metadata fields, such as changed and failed (much like Ansible) to indicate
what happened when a task was executed. The real meat of the results is buried in a field called result.
Using Python’s dir() function to explore these fields is useful, as shown below. For brevity, the author has
manually removed some fields not relevant to this discovery exercise.

(Pdb) dir(facts['csr1000v'][0])

[..., 'changed', 'diff', 'exception', 'failed', 'host', 'name', 'result', 'severity_level']

Feel free to casually explore some of these fields by simply referencing them. For example, since this was
a read-only task that succeeded, both changed and failed fields should be false. If this were a task with
configuration changes, changed could potentially be true if actual changes were necessary. Also note that
the name of this task was napalm_get, the default name as our script did not specify one. Nornir can
consume netmiko and NAPALM connection handlers, which provides expansive support for many network
platforms, and this helps prove it.

(Pdb) facts['csr1000v'][0].changed

False

(Pdb) facts['csr1000v'][0].failed

False

(Pdb) facts['csr1000v'][0].name

'napalm_get'

After digging through all of the custom objects, we can test the result field for its type, which results in a
basic dictionary with a top-level key of get_facts. The value is another dictionary with a handful of keys

Copyright 2021 Nicholas Russo http://njrusmc.net 162

http://njrusmc.net


containing device information. Simply printing out this field displays the dictionary that was pretty-printed by
the print_result() function shown earlier. The long get_facts dict output is broken up to fit the screen.

(Pdb) type(facts['csr1000v'][0].result)

<class 'dict'>

(Pdb) facts['csr1000v'][0].result

{'get_facts': {'uptime': 2340, 'vendor': 'Cisco',

'os_version': 'Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),

Version 16.9.1, RELEASE SOFTWARE (fc2)', 'serial_number': '9RJTDVAF3DP',

'model': 'CSR1000V', 'hostname': 'CSR1000v', 'fqdn': 'CSR1000v.ec2.internal',

'interface_list': ['GigabitEthernet1', 'VirtualPortGroup0']}}

Using pdb to reference individual fields, we can add some custom code to test our understanding. For
example, suppose we want to create a string containing the hostname and serial number in a hyphenated
string. Using the new f-string feature of Python 3.6, this is simple and clean.

(Pdb) data = facts['csr1000v'][0].result['get_facts']

(Pdb) important_info = f"{data['hostname']}-{data['serial_number']}"

(Pdb) important_info

'CSR1000v-9RJTDVAF3DP'

Armed with this new understanding, we can add these exact lines to our existing runbook and continue
development using the data dictionary as a handy shortcut to access the IOS facts.

It is worthwhile to explain Nornir’s run() function in greater depth. The run() function takes in a task
object, which is just another function. Because everything can be treated like an object in Python, passing
functions as parameters into other functions to be executed later is easy. This parameter function is a task
and contains the logic to perform some action, like run a command, gather facts, or make configuration
changes. The remaining keyword arguments (kwargs) are the inputs for the parameter function passed into
run(). In short, run() is a Nornir wrapper to execute the parameter function with its kwargs, but do so
within the framework of Nornir.

To group tasks together, one does not create a “list of tasks” as in Ansible. Instead, use a wrapper function
that has many run() invocations to sequence the tasks in the correct order. Nornir consumers can easily
insert additional logic in between run() calls, such as printing output, inserting pdb traces, writing to files, or
whatever other things don’t directly qualify as Nornir tasks. This wrapper function is passed into run() from
the calling function level as if it were a task itself. Be sure to include any kwargs needed for this wrapper
to operate. The example below expands our previous Nornir runbook to both collect basic facts and apply
configuration. For cleanliness, the author has added a main() function to this runbook.

The manage_router() function sequences the tasks to be run. Using NAPALM to configure network devices
introduces a rich feature set of providing a “diff”, automatic rollback, and automatic configuration saving.
Users should pass in a \n delineated string, which can be assembled by joining a list of strengths via
newline (or a variety of other techniques). Note that results from individual task calls are not saved inside
the wrapper; Nornir aggregates these results at the calling function level.

In the main() function, the calling function in this case, manage_router() is treated like a task and its
config_lines kwarg is populated with a list of service strings to apply. This task grouping wrapper is
executed and its results are printed out. The Python file below is named manage_router_ios.py.

from nornir import InitNornir

from nornir.plugins.tasks.networking import napalm_get

from nornir.plugins.tasks.networking import napalm_configure

from nornir.plugins.functions.text import print_result

def manage_router(nr, config_lines):

# Task 1: Get basic information (same as before)

nr.run(task=napalm_get, getters=['get_facts'])

Copyright 2021 Nicholas Russo http://njrusmc.net 163

http://njrusmc.net


# Task 2: Use "napalm_configure" function along with kwargs

# representing the configuration as a newline-joined string.

nr.run(task=napalm_configure, configuration='\n'.join(config_lines))

def main():

# Initialize a Nornir object.

nr = InitNornir()

# Define services as a list of strings

services = [

'service nagle',

'service sequence-numbers',

'no service pad'

]

# Run the grouped task function to get facts and apply config.

from_tasks = nr.run(task=manage_router, config_lines=services)

# Pretty-print the result to stdout in a pretty JSON format.

print_result(from_tasks)

if __name__ == '__main__':

main()

Running this code yields the following output. Tasks are printed out in the sequence in which they were
invoked. This particular router required Nagle and sequence-number services to be enabled, and needed
to have the PAD service disabled, per the diff included in the output.

[ec2-user@devbox nornir-test]# python3 manage_router_ios.py

manage_router***********************************************************

* csr1000v ** changed : True ***************************************************

vvvv manage_router ** changed : False vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO

---- napalm_get ** changed : False ------------------------------------- INFO

{ 'get_facts': { 'fqdn': 'CSR1000v.ec2.internal',

'hostname': 'CSR1000v',

'interface_list': ['GigabitEthernet1', 'VirtualPortGroup0'],

'model': 'CSR1000V',

'os_version': 'Virtual XE Software '

'(X86_64_LINUX_IOSD-UNIVERSALK9-M), Version '

'16.9.1, RELEASE SOFTWARE (fc2)',

'serial_number': '9RJTDVAF3DP',

'uptime': 1560,

'vendor': 'Cisco'}}

---- napalm_configure ** changed : True -------------------------------- INFO

+service nagle

+service sequence-numbers

-no service pad

^^^^ END manage_router ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Because NAPALM is idempotent with respect to IOS configuration management, running the runbook again
should yield no changes when the napalm_configure task is executed. The changed return value changes
from True in the previous output to False below. No diff is supplied as a result.

[ec2-user@devbox nornir-test]# python3 manage_router_ios.py

manage_router***********************************************************

* csr1000v ** changed : False **************************************************

Copyright 2021 Nicholas Russo http://njrusmc.net 164

http://njrusmc.net


vvvv manage_router ** changed : False vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO

---- napalm_get ** changed : False ------------------------------------- INFO

{ 'get_facts': { 'fqdn': 'CSR1000v.ec2.internal',

'hostname': 'CSR1000v',

'interface_list': ['GigabitEthernet1', 'VirtualPortGroup0'],

'model': 'CSR1000V',

'os_version': 'Virtual XE Software '

'(X86_64_LINUX_IOSD-UNIVERSALK9-M), Version '

'16.9.1, RELEASE SOFTWARE (fc2)',

'serial_number': '9RJTDVAF3DP',

'uptime': 2040,

'vendor': 'Cisco'}}

---- napalm_configure ** changed : False ------------------------------- INFO

^^^^ END manage_router ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Rerunning the code with a pdb trace applied at the end of the program allows Nornir users to explore the
from_tasks variable in more depth. For each host (in this case csr1000v), there is a list of MultiResult
objects. This list includes results from the wrapper function, not just the inner tasks, so its length should be
3: the grouped function followed by the 2 tasks. For troubleshooting they can be indexed as shown below.
Notice the empty-string diff returned by NAPALM from the second task, an indicator that our network hasn’t
experienced any changes since the last Nornir run.

[ec2-user@devbox nornir-test]# python3 manage_router_ios.py

> /home/ec2-user/nornir-test/manage_router_ios.py(31)main()

-> print_result(from_tasks)

(Pdb) from_tasks

AggregatedResult (manage_router): {'csr1000v': MultiResult:

[Result: "manage_router", Result: "napalm_get", Result: "napalm_configure"]}

(Pdb) from_tasks['csr1000v']

MultiResult: [Result: "manage_router", Result: "napalm_get",

Result: "napalm_configure"]

(Pdb) len(from_tasks['csr1000v'])

3

(Pdb) from_tasks['csr1000v'][0]

Result: "manage_router"

(Pdb) from_tasks['csr1000v'][1]

Result: "napalm_get"

(Pdb) from_tasks['csr1000v'][2]

Result: "napalm_configure"

(Pdb) from_tasks['csr1000v'][2].diff

''

2.4.7 Version Control Overview

Automation in general is a fundamental topic of an effective automation design. In all case, a program-
mer needs to write the code in the first place, and like all pieces of code, it must be maintained, tested,
versioned, and continuously monitored. Examples of popular repositories for text file configuration man-
agement include Github and Amazon Web Services (AWS) CodeCommit. The sections that follow include
demonstrations using a variety of version control systems and remote repositories.

Copyright 2021 Nicholas Russo http://njrusmc.net 165

http://njrusmc.net


2.4.8 Git with Github

In the first example, a Google Codejam solution is shown in the code that follows. The challenge was finding
the minimal scalar product between two vectors of equal length. The solution is to sort both vectors: one
sorted greatest-to-least, and one sorted least-to-greatest. Then, performing the basic scalar product logic,
the problem is solved. This code is not an exercise in absolute efficiency or optimization as it was written
to be modular and readable. The example below was written in Python 3.5.2 and the name of the file is
VectorPair.py.

Nicholass-MBP:min-scalar-prod nicholasrusso# python3 --version

Python 3.5.2

class VectorPair:

"""

Class defining a VectorPair object with helper methods.

"""

def __init__(self, v1, v2, n):

"""

Constructor takes in two vectors and the vector length.

"""

self.v1 = v1

self.v2 = v2

self.n = n

def _resolve_sp(self, v1, v2):

"""

Given two vectors of equal length, the scalar product is pairwise

multiplication of values and the sum of all pairwise products.

"""

sp = 0

# Iterate over elements in the array and compute

# the scalar product

for i in range(self.n):

sp += v1[i] * v2[i]

return sp

def resolve_msp(self):

"""

Given two vectors of equal length, the minimum scalar product is

the smallest number that exists given all permutations of

multiplying numbers between the two vectors.

"""

# Sort v1 low->high and v2 high->low

# This ensures the smallest values of one list are

# paired with the largest values of the other

v1sort = sorted(self.v1, reverse=False)

v2sort = sorted(self.v2, reverse=True)

# Invoke the internal method for resolution

return self._resolve_sp(v1sort, v2sort)

This Github account is used to demonstrate a revision control example. Suppose that a change to the
Python script above is required, and specifically, a trivial comment change. Checking the git status first,
the repository is up to date as no changes have been made. It explores git at a very basic level and does
not include branches, forks, pull requests, etc.

Copyright 2021 Nicholas Russo http://njrusmc.net 166

http://njrusmc.net


Nicholass-MBP:min-scalar-prod nicholasrusso# git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

The verbiage of a comment relating to the constructor method is now changed.

Nicholass-MBP:min-scalar-prod nicholasrusso# grep Constructor VectorPair.py

Constructor takes in the vector length and two vectors.

### OPEN THE TEXT EDITOR AND MAKE CHANGES (NOT SHOWN) ###

Nicholass-MBP:min-scalar-prod nicholasrusso# grep Constructor VectorPair.py

Constructor takes in two vectors and the vector length.

git status now reports that VectorPair.py has been modified but not added to the set of files to be
committed to the repository. The changes not staged for commit indicates that the files are not currently
in the staging area.

Nicholass-MBP:min-scalar-prod nicholasrusso# git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: VectorPair.py

no changes added to commit (use "git add" and/or "git commit -a")

Adding this file to the list of changed files effectively stages it for commitment to the repository. The
changes to be committed verbiage word from the terminal indicates this.

Nicholass-MBP:min-scalar-prod nicholasrusso# git add VectorPair.py

Nicholass-MBP:min-scalar-prod nicholasrusso# git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: VectorPair.py

Next, the file is committed with a comment explaining the change. This command does not update the
Github repository, only the local one. Code contained in the local repository is, by definition, one program-
mer’s local work. Other programmers may be contributing to the remote repository while another works
locally for some time. This is why git is considered a “distributed” version control system.

Nicholass-MBP:min-scalar-prod nicholasrusso# git commit -m "evolving tech comment update"

[master 74ed39a] evolving tech comment update

1 file changed, 2 insertions(+), 2 deletions(-)

Nicholass-MBP:min-scalar-prod nicholasrusso# git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working directory clean

To update the remote repository, the committed updates must be pushed. After this is complete, the
git status utility informs us that there are no longer any changes.

Nicholass-MBP:min-scalar-prod nicholasrusso# git push -u

Copyright 2021 Nicholas Russo http://njrusmc.net 167

http://njrusmc.net


Counting objects: 4, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 455 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

To https://github.com/nickrusso42518/google-codejam.git

e8d0c54..74ed39a master -> master

Branch master set up to track remote branch master from origin.

Nicholass-MBP:min-scalar-prod nicholasrusso# git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

Logging into the Github web page, one can verify the changes were successful. At the root directory
containing all of the Google Codejam challenges, the comment added to the last commit is visible.

Figure 53: Github Changes — Summary

Looking into the min-scalar-prod directory and specifically the VectorPair.py file, git clearly displays the
additions/removals from the file. As such, git is a powerful tool that can be used for scripting, data files
(YAML, JSON, XML, YANG, etc.) and any other text documents that need to be revision controlled. The
screenshot is shown below.

Figure 54: Github Changes — Detailed Differences

2.4.9 Git with AWS CodeCommit and CodeBuild

Although AWS services are not on the blueprint, a basic understanding of developer services available in
public cloud (PaaS and SaaS options) is worth examining. This example uses the CodeCommit service,
which is comparable to Github, acting as a remote Git repository. Additionally, CodeBuild CI services are
integrated into the test repository, similar to Travis CI or Jenkins, for testing the code.

This section does not walk through all of the detailed AWS setup as there are many tutorials and documents
detailing it. However, some key points are worth mentioning. First, an Identity and Access Management

Copyright 2021 Nicholas Russo http://njrusmc.net 168

http://njrusmc.net


(IAM) group should be created for any developers accessing the project. The author also created a user
called nrusso and added him to the Development group.

Figure 55: Creating a New AWS IAM User and Group

Note that the permissions of the Development group should include AWSCodeCommitFullAccess.

Figure 56: Assigning AWS IAM Permissions

Navigating to the CodeCommit service, create a new repository called awsgit without selecting any other
fancy options. This initializes and empty repository. This is the equivalent of creating a new repository in
Github without having pushed any files to it.

Figure 57: Creating a New AWS CodeCommit Repository

Next, perform a clone operation from the AWS CodeCommit repository using HTTPS. While the repository
is empty, this establishes successful connectivity with AWS CodeCommit.

Copyright 2021 Nicholas Russo http://njrusmc.net 169

http://njrusmc.net


Nicholass-MBP:projects nicholasrusso# git clone \

> https://git-codecommit.us-east-1.amazonaws.com/v1/repos/awsgit

Cloning into 'awsgit'...

Username for 'https://git-codecommit.us-east-1.amazonaws.com': nrusso-at-043535020805

Password for 'https://nrusso-at-043535020805@git-codecommit.us-east-1.amazonaws.com':

warning: You appear to have cloned an empty repository.

Checking connectivity... done.

Nicholass-MBP:projects nicholasrusso# ls -l awsgit/

Nicholass-MBP:projects nicholasrusso#

Change into the directory and check the Git remote repositories. The AWS CodeCommit repository named
awsgit has been added automatically after the clone operation. We can tell this is a Git repository since it
contains the .git hidden folder.

Nicholass-MBP:projects nicholasrusso# cd awsgit/

Nicholass-MBP:awsgit nicholasrusso# git remote -v

origin https://git-codecommit.us-east-1.amazonaws.com/v1/repos/awsgit (fetch)

origin https://git-codecommit.us-east-1.amazonaws.com/v1/repos/awsgit (push)

Nicholass-MBP:awsgit nicholasrusso# ls -la

total 0

drwxr-xr-x 3 nicholasrusso staff 102 May 5 14:45 .

drwxr-xr-x 8 nicholasrusso staff 272 May 5 14:45 ..

drwxr-xr-x 10 nicholasrusso staff 340 May 5 14:46 .git

Create a file. Below is an example of a silly README.md file in markdown. Markdown is a simple way of
writing HTML code that many repository systems can render nicely.

# DevOps in Cloud

This is pretty cool

## Hopefully markdown works

That would make this file look good

> Note: Important message

```

code

block

```

Following the basic git workflow, we add the file to the staging area, commit it to the local repository, then
push it to AWS CodeCommit repository called awsgit.

Nicholass-MBP:awsgit nicholasrusso# git add .

Nicholass-MBP:awsgit nicholasrusso# git commit -m "added readme"

[master (root-commit) 99bfff2] added readme

1 file changed, 12 insertions(+)

create mode 100644 README.md

Nicholass-MBP:awsgit nicholasrusso# git push -u origin master

Counting objects: 3, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 337 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://git-codecommit.us-east-1.amazonaws.com/v1/repos/awsgit

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

Copyright 2021 Nicholas Russo http://njrusmc.net 170

http://njrusmc.net


Check the AWS console to see if the file was correctly received by the repository. It was, and even better,
CodeCommit supports Markdown rendering just like Github, Gitlab, and many other GUI-based systems.

Figure 58: AWS CodeCommit README File

To build on this basic repository, we can enable continuous integration (CI) using AWS CodeBuild service. It
ties in seamlessly to CodeCommit which, unlike other common integrations (Github + Jenkins) which require
many manual steps. The author creates a sample project below based on Fibonacci numbers, which are
numbers whereby the next number is the sum of the previous two. Some additional error-checking is added
to check for non-integer inputs, which makes the test cases more interesting. The Python file below is called
fibonacci.py.

#!/bin/python

def fibonacci(n):

if not isinstance(n, int):

raise ValueError('Please use an integer')

elif n < 2:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Any good piece of software should come with unit tests. Some software development methodologies, such
as Test Driven Development (TDD), even suggest writing the unit tests before the code itself! Below are the
enumerated test cases used to test the Fibonacci function defined above. The three test cases evaluate

Copyright 2021 Nicholas Russo http://njrusmc.net 171

http://njrusmc.net


zero/negative number inputs, bogus string inputs, and valid integer inputs. The test script below is called
fibotest.py.

#!/bin/python

import unittest

from fibonacci import fibonacci

class fibotest(unittest.TestCase):

def test_input_zero_neg(self):

self.assertEqual(fibonacci(0), 0)

self.assertEqual(fibonacci(-1), -1)

self.assertEqual(fibonacci(-42), -42)

def test_input_invalid(self):

try:

n = fibonacci('oops')

self.fail()

except ValueError:

pass

except:

self.fail()

def test_input_valid(self):

self.assertEqual(fibonacci(1), 1)

self.assertEqual(fibonacci(2), 1)

self.assertEqual(fibonacci(10), 55)

self.assertEqual(fibonacci(20), 6765)

self.assertEqual(fibonacci(30), 832040)

The test cases above are executed using the unittest toolset which loads in all the test functions and
executes them in a test environment. The file below is called runtest.py.

#!/bin/python

import unittest

import sys

from fibotest import fibotest

def runtest():

testRunner = unittest.TextTestRunner()

testSuite = unittest.TestLoader().loadTestsFromTestCase(fibotest)

testRunner.run(testSuite)

runtest()

To manually run the tests, simply execute the runtest.py code. There are, of course, many different ways
to test Python code. A simpler alternative could have been to use pytest but using the unittest strategy
is just as effective.

Nicholass-MBP:awsgit nicholasrusso# python runtest.py

...

----------------------------------------------------------------------

Ran 3 tests in 0.970s

OK

However, the goal of CodeBuild is to offload this testing to AWS based on triggers, which can be manual
scheduling, commit-based, time-based, and more. In order to provide the build specifications for AWS so it

Copyright 2021 Nicholas Russo http://njrusmc.net 172

http://njrusmc.net


knows what to test, the buildspec.yml file can be defined. Below is simple, one-stage CI pipeline that just
runs the test code we developed.

# buildspec.yml

version: 0.2

phases:

pre_build:

commands:

- python runtest.py

Add, commit, and push these new files to the repository (not shown). Note that the author also added a
.gitignore file so that the Python machine code (.pyc) files would be ignored by git. Verify that the source
code files appear in CodeCommit.

Figure 59: AWS CodeCommit Repository with Files

Click on the fibonacci.py file as a sanity check to ensure the text was transferred successfully. Notice that
CodeCommit does some syntax highlighting to improve readability.

Copyright 2021 Nicholas Russo http://njrusmc.net 173

http://njrusmc.net


Figure 60: AWS CodeCommit Fibonacci Source Code

At this point, you can schedule a build in CodeBuild to test out your code. The author does not walk through
setting up CodeBuild because there are many tutorials on it, and it is simple. A basic screenshot below
shows the process at a high level. CodeBuild will automatically spin up a test instance of sorts (in this case,
Ubuntu Linux with Python 3.5.2) to execute the buildspec.yml file.

Figure 61: AWS CodeBuild Build Start

After the manual build (in our case, just a unit test, we didn’t “build” anything), the detailed results are
displayed on the screen. The phases that were not defined in the buildspec.yml file, such as INSTALL,
BUILD, and POST_BUILD, instantly succeed as they do not exist. Actually testing the code in the PRE_BUILD

phase only took 1 second. If you want to see this test take longer, define test cases use larger numbers for
the Fibonacci function input, such as 50.

Copyright 2021 Nicholas Russo http://njrusmc.net 174

http://njrusmc.net


Figure 62: AWS CodeBuild Build Progress

Below these results is the actual machine output, which matches the test output we generated when running
the tests manually. This indicates a successful CI pipeline integration between CodeCommit and CodeBuild.
Put another way, it is a fully integrated development environment without the manual setup of Github +
Jenkins, Bitbucket + Travis CI, or whatever other combination of SCM + CI you can think of.

Figure 63: AWS CodeBuild Build Log

Note that build history, as it is in every CI system, is also available. The author initially failed the first build
test due to a configuration problem within buildspec.yml, which illustrates the value of maintaining build
history.

Figure 64: AWS CodeCommit Build History

Copyright 2021 Nicholas Russo http://njrusmc.net 175

http://njrusmc.net


The main drawback of these fully-integrated services is that they are specific to your cloud provider. Some
would call this “vendor lock-in”, since portability is limited. To move, you could clone your Git repositories
and move elsewhere, but that may require retooling your CI environment. It may also be time consuming and
risky for large projects with many developers and many branches, whereby any coordinated work stoppage
would be challenging to execute.

2.4.10 Subversion (SVN) and comparison to Git

Subversion (SVN) is another version control system, though in the author’s experience, is less commonly
used today when compared to git. SVN is a centralized version control system whereby the commit action
pushes changes to the central repository. The checkout action pulls changes down from the repository. In
git, these two actions govern activity against the local repository with additional commands like push, pull
(fetch and merge), and clone being available for interaction with remote repositories.

This section assumes the reader has already set up a basic SVN server. A link in the references provides
simple instructions for building a local SVN server on CentOS7. The author used this procedure, with some
basic modifications for Amazon Linux, for hosting on AWS EC2. It’s public URL is http://svn.njrusmc.net/
(the URL is dead at the time of this writing) for this demonstration. A repository called repo1 has been cre-
ated on the server with a test user of nrusso with full read/write permissions.

The screenshots below show the basic username/password login and the blank repository. Do not continue
until, at a minimum, you have achieved this functionality.

Figure 65: SVN Repository — Initial Login

Copyright 2021 Nicholas Russo http://njrusmc.net 176

http://njrusmc.net


Figure 66: SVN Repository — Empty Project

The remainder of this section is focused on SVN client-side operations, where the author uses another
Amazon Linux EC2 instance to represent a developer’s workstation.

First, SVN must be installed using the command below. Like git, it is a relatively small program with a few
small dependencies. Last, ensure the svn command is in your path, which should happen automatically.

[root@devbox ec2-user]# yum install subversion

Loaded plugins: amazon-id, rhui-lb, search-disabled-repos

[snip]

Installed:

subversion.x86_64 0:1.7.14-14.el7

Complete!

[root@devbox ec2-user]# which svn

/bin/svn

Use the command below to checkout (similar to git’s pull or clone) the empty repository built on the SVN
server. The author put little effort into securing this environment, as evidenced by using HTTP and without
any data protection on the server itself. Production repositories would likely not see the authentication
warning below.

[root@devbox ~]# svn co --username nrusso http://svn.njrusmc.net/svn/repo1 repo1

Authentication realm: <http://svn.njrusmc.net:80> SVN Repos

Password for 'nrusso':

-----------------------------------------------------------------------

ATTENTION! Your password for authentication realm:

[snip password warning]

Checked out revision 0.

The SVN system will automatically create a directory called "repo1" in the

working directory where the SVN checkout was performed. There are no

version-controlled files in it, since the repository has no code yet.

[root@devbox ~]# ls -l repo1/

total 0

Next, change to this repository directory and look at the repository information. There is nothing particularly
interesting, but it is handy in case you forget the URL or current revision.

[root@devbox ~]# cd repo1/

Copyright 2021 Nicholas Russo http://njrusmc.net 177

http://njrusmc.net


[root@devbox repo1]# svn info

Path: .

Working Copy Root Path: /root/repo1

URL: http://svn.njrusmc.net/svn/repo1

Repository Root: http://svn.njrusmc.net/svn/repo1

Repository UUID: 26c9a9fa-97ad-4cdc-a0ad-9d84bf11e78a

Revision: 0

Node Kind: directory

Schedule: normal

Last Changed Rev: 0

Last Changed Date: 2018-05-05 09:45:25 -0400 (Sat, 05 May 2018)

Next, create a file. The author created a simple but highly suboptimal exponentiation function using recur-
sion in Python. A few test cases are included at the end of the file. The name of the Python file below is
svn_test.py.

#!/bin/python

def pow(base, exponent):

if(exponent == 0):

return 1

else:

return base * pow(base, exponent - 1)

print('2^4 is {}'.format(pow(2, 4)))

print('3^5 is {}'.format(pow(3, 5)))

print('4^6 is {}'.format(pow(4, 6)))

print('5^7 is {}'.format(pow(5, 7)))

Quickly test the code by executing it with the command below (not that the mathematical correctness matters
for this demonstration).

[root@devbox repo1]# python svn_test.py

2^4 is 16

3^5 is 243

4^6 is 4096

5^7 is 78125

Like git, SVN has a status option. The question mark next to the new Python files suggests SVN does
not know what this file is. In git terms, it is an untracked file that needs to be added to the version control
system.

[root@devbox repo1]# svn status

? svn_test.py

The SVN add command is somewhat similar to git add with the exception that files are only added once. In
git, add moves files from the working directory to the staging area. In SVN, add moves untracked files into
a tracked status. The A at the beginning of the line indicates the file was added.

[root@devbox repo1]# svn add svn_test.py

A svn_test.py

In case you missed the output above, you can use the status command (st is a built-in alias) to verify that
the file was added.

[root@devbox repo1]# svn st

A svn_test.py

The last step involves the commit action to push changes to the SVN repository. The output indicates we
are now on version 1.

Copyright 2021 Nicholas Russo http://njrusmc.net 178

http://njrusmc.net


[root@devbox repo1]# svn commit svn_test.py -m"python recursive exponent function"

Adding svn_test.py

Transmitting file data .

Committed revision 1.

The SVN status shows no changes. This similar to a git “clean working directory” but is implicit given the
lack of output.

[root@devbox repo1]# svn st

[root@devbox repo1]#

Below are screenshots of the repository as viewed from a web browser. Now, our new file is present.

Figure 67: SVN Repository — Files Present

As in most git-based repository systems with GUIs, such as Github or Gitlab, you can click on the file to
see its contents. While this version of SVN server is a simple Apache2-based, no-frills implementation, this
feature still works. Clicking on the hyperlink reveals the source code contained in the file.

Figure 68: SVN Repository — Viewing Code

Next, make some changes to the file. In this case, remove one test case and add a new one. Verify the
changes were saved.

Copyright 2021 Nicholas Russo http://njrusmc.net 179

http://njrusmc.net


[root@devbox repo1]# tail -4 svn_test.py

print('2^4 is {}'.format(pow(2, 4)))

print('4^6 is {}'.format(pow(4, 6)))

print('5^7 is {}'.format(pow(5, 7)))

print('6^8 is {}'.format(pow(6, 8)))

SVN status now reports the file as modified, similar to git. Use the diff command to view the changes.
Plus signs (+) and minus signs (-) are used to indicate additions and deletions, respectively.

[root@devbox repo1]# svn status

M svn_test.py

[root@devbox repo1]# svn diff

Index: svn_test.py

===================================================================

--- svn_test.py (revision 1)

+++ svn_test.py (working copy)

@@ -7,6 +7,6 @@

return base * pow(base, exponent - 1)

print('2^4 is {}'.format(pow(2, 4)))

-print('3^5 is {}'.format(pow(3, 5)))

print('4^6 is {}'.format(pow(4, 6)))

print('5^7 is {}'.format(pow(5, 7)))

+print('6^8 is {}'.format(pow(6, 8)))

Unlike git, there is no staging area, so the add command used again fails. The file is already under version
control and so can be directly committed to the repository.

[root@devbox repo1]# svn add svn_test.py

svn: warning: W150002: '/root/repo1/svn_test.py' is already under version control

svn: E200009: Could not add all targets because some targets are already versioned

svn: E200009: Illegal target for the requested operation

Using the built-in ci alias for commit, push the changes to the repository. The current code version is
incremented to 2.

[root@devbox repo1]# svn ci svn_test.py -m"different numbers"

Sending svn_test.py

Transmitting file data .

Committed revision 2.

To view log entries, use the update command first to bring changes from the remote repository into our
workspace. This ensures that the subsequent log command works correctly, similar to git’s log command.
Using the verbose option, one can see all of the relevant history for these code modifications.

[root@devbox repo1]# svn update

Updating '.':

At revision 2.

[root@devbox repo1]# svn log -v

------------------------------------------------------------------------

r2 | nrusso | 2018-05-05 10:52:37 -0400 (Sat, 05 May 2018) | 1 line

Changed paths:

M /svn_test.py

different numbers

------------------------------------------------------------------------

r1 | nrusso | 2018-05-05 10:47:03 -0400 (Sat, 05 May 2018) | 1 line

Changed paths:

A /svn_test.py

Copyright 2021 Nicholas Russo http://njrusmc.net 180

http://njrusmc.net


python recursive exponent function

------------------------------------------------------------------------

The table that follows briefly compares the git and SVN version control systems. One is not better than the
other; they are simply different. Tools like git is best suited for highly technical, distributed teams where
local version control and frequent offline development occurs. SVN is generally simpler and it is easier to
do simple tasks, such as manager a single-branch repository with checkout and commit actions.

Git Subversion (SVN)

General design Distributed; local and remote repo Centralized; central repo only

Staging area? Yes; can split work across commits No, commit means push

Learning curve Hard; many commands to learn Easy; fewer moving pieces

Branching and merging Easy, simple, and fast Complex and laborious

Revisions None; SHA1 commit IDs instead Simple numbers; easy for non-techs

Directory support Tracks only files, not directories Tracks directories (empty ones too)

Data tracked Content of the files Files themselves

Windows support Generally poor Tortoise SVN plugin is a good option

Table 5: Git and SVN Comparison

2.4.11 Network Validation with Batfish

Given a set of network configurations, can you determine how the network will behave? In the context of
CI/CD, engineers will frequently spin up virtual instances dynamically, interconnect them according to the
topological specifications, then load the configurations. Once complete, some automated script will test
for compliance on the emulated devices. While powerful, this approach can be time consuming, resource
intensive, and complex to build. Batfish offers a comparable capability except operates offline, ingesting
configurations and inferring the network’s behavior sans emulation. Batfish is a great “first step” in a network
test pipeline to catch any errors before the emulations begin. In some environments, Batfish alone may be
adequate to determine the validity of a network, depending on the organizational goals.

The public documentation for Batfish is clear and concise. This demonstration focuses primarily on Batfish
with Python using pybatfish, linked here. The first several steps are straightforward and leverage tech-
nologies discussed elsewhere in this book, such as Python virtual environments and Docker containers.
After creating a new venv for Batfish testing, install the pybatfish package. This provides a client interface
into the Batfish server, which is downloaded and run using Docker on the local development machine.

[ec2-user@devbox bf]# python3.6 -m venv ~/environments/batfish

[ec2-user@devbox bf]# source ~/environments/batfish/bin/activate

[ec2-user@devbox bf]# pip install pybatfish

Collecting pybatfish

Downloading https: (snip)

Successfully installed pybatfish-2020.10.8.667 (snip)

[ec2-user@devbox bf]# sudo docker pull batfish/allinone

Using default tag: latest

latest: Pulling from batfish/allinone

(snip)

Status: Downloaded newer image for batfish/allinone:latest

docker.io/batfish/allinone:latest

[ec2-user@devbox bf]# sudo docker run --name batfish \

Copyright 2021 Nicholas Russo http://njrusmc.net 181

https://pybatfish.readthedocs.io/en/latest/
http://njrusmc.net


-v batfish-data:/data \

-p 8888:8888 -p 9997:9997 -p 9996:9996 \

-d batfish/allinone

be9782adbd7e5ec64(snip)

In a production environment, one might leverage Kubernetes to maintain several pods, each of which runs
one instance of Batfish, to provide increased scale and availability. Putting all of the Batfish pods behind
a common Kubernetes service (effectively a DNS hostname) is one approach to building an enterprise-
grade Batfish deployment. In the interest of simplicity, this demo will employ Batfish to analyze two large
OSPF networks. These are Cisco Live presentations that I’ve delivered in the past and each one has
roughly 20 network devices. The BRKRST-3310 session focuses on troubleshooting and automation while
the DIGRST-2337 session focuses on design and deployment. The hyperlinks lead to the configuration
repositories for each session. Those repositories are cloned from GitHub below.

[ec2-user@devbox bf]# git clone https://github.com/nickrusso42518/ospf_brkrst3310.git

Cloning into 'ospf_brkrst3310'...

remote: Enumerating objects: 133, done.

remote: Total 133 (delta 0), reused 0 (delta 0), pack-reused 133

Receiving objects: 100% (133/133), 342.87 KiB | 0 bytes/s, done.

Resolving deltas: 100% (90/90), done.

[ec2-user@devbox bf]# git clone https://github.com/nickrusso42518/ospf_digrst2337.git

Cloning into 'ospf_digrst2337'...

remote: Enumerating objects: 45, done.

remote: Counting objects: 100% (45/45), done.

remote: Compressing objects: 100% (22/22), done.

remote: Total 45 (delta 27), reused 41 (delta 23), pack-reused 0

Unpacking objects: 100% (45/45), done.

Batfish consumes information by encapsulating the relevant data into “snapshots”. A snapshot is repre-
sented on the filesystem as a hierarchical directory structure with a variety of subdirectories. The only
relevant directory in this demo is configs/ which contains network device configurations (Batfish does not
care about file extensions). More generally, a snapshot is a collection of configurations for a given network
at a given point in time. Batfish can operate on multiple networks independently, each with many snapshots.
Within a given network, you can analyze the differences between any pair of snapshots.

[ec2-user@devbox bf]# mkdir -p snapshots/brkrst3310/configs

[ec2-user@devbox bf]# cp ospf_brkrst3310/final-configs/*.txt snapshots/brkrst3310/configs/

[ec2-user@devbox bf]# ls -1 snapshots/brkrst3310/configs/

R10.txt

R11.txt

R12.txt

(snip)

The output below reveals the full tree structure. The snapshot directory is named brkrst3310 and the
configs/ subdirectory contains all of the network device configurations. To add additional snapshots for
other networks, simply create a new directory under the snapshots/ parent directory. For now, ignore the
other (empty) directories.

[ec2-user@devbox bf]# tree snapshots/ --charset==ascii

snapshots/

`-- brkrst3310

|-- batfish

|-- configs

| |-- R10.txt

| |-- R11.txt

(snip)

| |-- R8.txt

| `-- R9.txt

|-- hosts

Copyright 2021 Nicholas Russo http://njrusmc.net 182

https://github.com/nickrusso42518/ospf_brkrst3310
https://github.com/nickrusso42518/ospf_digrst2337
http://njrusmc.net


`-- iptables

Next, let’s write some Python code to interact with the local Batfish server. The full script is shown below
and is well-commented. In summary, the script takes in a single command-line argument, which should
match the name of the snapshot directory (“brkrst3310” in this case). The code connects to the Batfish
server, initializes a snapshot from the proper directory, then asks a series of OSPF-related questions. A
“question” is the mechanism by which an engineer tasks Batfish. Batfish will “answer” the question and
return a pandas data frame, commonly used for data manipulation and analysis. The script converts the
pandas data frame into three common file formats: JSON, HTML, CSV, and pandas data frame as a text
string. These four formats are used for demonstration only; many additional formats are available per the
pandas documentation.

[ec2-user@devbox bf]# cat bf.py

#!/usr/bin/env python

"""

Author: Nick Russo

Purpose: Tests Batfish on sample Cisco Live sessions focused

on the OSPF routing protocol using archived configurations.

"""

import sys

import json

import pandas

from pybatfish.client.commands import *

from pybatfish.question import bfq, load_questions

# Global pandas formatting for string display

pandas.set_option("display.width", 1000)

pandas.set_option("display.max_columns", 20)

pandas.set_option("display.max_rows", 1000)

pandas.set_option("display.max_colwidth", -1)

def main(directory):

"""

Tests Batfish logic on a specific snapshot directory.

"""

# Perform basic initialization per documentation

bf_session.host = "localhost"

bf_set_network(directory)

bf_init_snapshot(f"snapshots/{directory}", name=directory, overwrite=True)

load_questions()

# Identify the questions to ask (not calling methods yet)

bf_questions = {

"proc": bfq.ospfProcessConfiguration,

"intf": bfq.ospfInterfaceConfiguration,

"area": bfq.ospfAreaConfiguration,

"nbrs": bfq.ospfEdges,

}

# Unpack dictionary tuples and iterate over them

for short_name, bf_question in bf_questions.items():

# Ask the question and store the response pandas frame

pandas_frame = bf_question().answer().frame()

Copyright 2021 Nicholas Russo http://njrusmc.net 183

http://njrusmc.net


# Assemble the generic file name prefix

file_name = f"outputs/{short_name}_{directory}"

# Generate JSON data for programmatic consumption

json_data = json.loads(pandas_frame.to_json(orient="records"))

with open(f"{file_name}.json", "w") as handle:

json.dump(json_data, handle, indent=2)

# Generate HTML data for web browser viewing

html_data = pandas_frame.to_html()

with open(f"{file_name}.html", "w") as handle:

handle.write(html_data)

# Generate CSV data using pipe separator (bf data has commas)

csv_data = pandas_frame.to_csv(sep="|")

with open(f"{file_name}.csv", "w") as handle:

handle.write(csv_data)

# Store string version of pandas data frame (table-like)

with open(f"{file_name}.pandas.txt", "w") as handle:

handle.write(str(pandas_frame))

if __name__ == "__main__":

# Check for at least 2 CLI args; fail if absent

if len(sys.argv) < 2:

print("usage: python bf.py <snapshot_dir_name>")

sys.exit(1)

# Snapshot directory was specified; pass it into main

else:

main(sys.argv[1])

You’ll notice that the script writes all artifacts to the outputs/ directory, so we’ll quickly create that first.
Then, we’ll run the bf.py script, passing in “brkrst3310” as a CLI argument. By default, Batfish logs its
actions to the console for easy troubleshooting.

[ec2-user@devbox bf]# mkdir outputs

[ec2-user@devbox bf]# python bf.py brkrst3310

status: TRYINGTOASSIGN

.... no task information

status: ASSIGNED

.... 2020-12-20 14:42:22.439000+00:00 Parse network configs 0 / 19.

status: ASSIGNED

.... 2020-12-20 14:42:22.439000+00:00 Convert configurations

to vendor-independent format 1 / 20.

status: TERMINATEDNORMALLY

.... 2020-12-20 14:42:22.439000+00:00 Deserializing objects of type

'org.batfish.datamodel.Configuration' from files 19 / 19.

Default snapshot is now set to brkrst3310

status: TRYINGTOASSIGN

.... no task information

status: CHECKINGSTATUS

.... no task information

status: TERMINATEDNORMALLY

.... 2020-12-20 14:42:22.955000+00:00 Parse environment BGP tables.

Successfully loaded 65 questions from remote

Successfully loaded 65 questions from remote

status: TRYINGTOASSIGN

.... no task information

Copyright 2021 Nicholas Russo http://njrusmc.net 184

http://njrusmc.net


status: CHECKINGSTATUS

.... no task information

status: TERMINATEDNORMALLY

.... 2020-12-20 14:42:23.356000+00:00 Begin job.

status: TRYINGTOASSIGN

.... no task information

status: TERMINATEDNORMALLY

.... 2020-12-20 14:42:23.674000+00:00 Begin job.

status: ASSIGNED

.... no task information

status: TERMINATEDNORMALLY

.... 2020-12-20 14:42:23.833000+00:00 Begin job.

After a few seconds, the script completes, and the outputs/ directory contains 16 new files (4 questions
asked * 4 output formats). The script asked Batfish for OSPF area, interface, process, and neighbor infor-
mation specifically. The full list of supported Batfish questions is listed in the documentation.

[ec2-user@devbox bf]# ls -1 outputs/

area_brkrst3310.csv

area_brkrst3310.html

area_brkrst3310.json

area_brkrst3310.pandas.txt

intf_brkrst3310.csv

intf_brkrst3310.html

intf_brkrst3310.json

intf_brkrst3310.pandas.txt

nbrs_brkrst3310.csv

nbrs_brkrst3310.html

nbrs_brkrst3310.json

nbrs_brkrst3310.pandas.txt

proc_brkrst3310.csv

proc_brkrst3310.html

proc_brkrst3310.json

proc_brkrst3310.pandas.txt

We’ll examine one of each file corresponding to one of each feature. Starting with the OSPF area JSON
file, we see a list of dictionaries. Each dictionary describes a different OSPF area from the perspective of
a network device. In this case, Batfish says R6 has area 4 configured as an NSSA. R4 also has three
interfaces in that area, one of which is passive. Regarding R2, it has area 1 configured as a standard area
with only one active interface participating in that area. All of these statements are true; you can check the
GitHub configurations or topology diagram yourself if you like.

[ec2-user@devbox bf]# head -n 26 outputs/area_brkrst3310.json

[

{

"Node": "r6",

"VRF": "default",

"Process_ID": "1",

"Area": "4",

"Area_Type": "NSSA",

"Active_Interfaces": [

"Ethernet0/0",

"Serial1/1"

],

"Passive_Interfaces": [

"Loopback0"

]

},

{

Copyright 2021 Nicholas Russo http://njrusmc.net 185

http://njrusmc.net


"Node": "r2",

"VRF": "default",

"Process_ID": "1",

"Area": "1",

"Area_Type": "NONE",

"Active_Interfaces": [

"Ethernet0/0"

],

"Passive_Interfaces": []

},

Next, let’s examine the OSPF interface HTML file. This uses a table format to represent the data, making it
easy to view for non-technical people to view using their web browsers. The beginning of the file identifies
the column names and includes common OSPF interface-level parameters.

[ec2-user@devbox bf]# head -n 15 outputs/intf_brkrst3310.html

<table border="1" class="dataframe">

<thead>

<tr style="text-align: right;">

<th></th>

<th>Interface</th>

<th>VRF</th>

<th>Process_ID</th>

<th>OSPF_Area_Name</th>

<th>OSPF_Enabled</th>

<th>OSPF_Passive</th>

<th>OSPF_Cost</th>

<th>OSPF_Network_Type</th>

<th>OSPF_Hello_Interval</th>

<th>OSPF_Dead_Interval</th>

</tr>

Rather than scrub the file, it makes more sense to examine a web browser screenshot as shown below.
Some rows have been deleted for brevity. Because the table is very wide and will be hard to read in this
book, the author has manually shortened some column names. At a glance, the data looks correct, as all
Ethernet interfaces in the topology typically have a cost of 10, use standard OSPF hello/dead timers, are
not passive (i.e., links between devices), and use the P2P network type.

Figure 69: Batfish pandas Data Frame in HTML Format

Next, let’s examine the OSPF process CSV file. Using the column command, an engineer can view a
tabular file without needing a spreadsheet application. Note that this particular “answer” embeds commas
in the data, so the Python script used the pipe (|) character instead. Again, the author has shortened some
column names to keep the table clean. Like the JSON and HTML files, this data is correct per the network
topology.

[ec2-user@devbox bf]# column -s'|' -t outputs/proc_brkrst3310.csv | less -S

Copyright 2021 Nicholas Russo http://njrusmc.net 186

http://njrusmc.net


Node vrf PID Areas Reference_BW Router_ID Export_Policy_Sources ABR

r13 default 1 [3] 100000000.0 10.0.0.13 [] False

r6 default 1 [4] 100000000.0 10.0.0.6 ['RM_EIGRP_TO_OSPF'] False

r15 default 1 [2] 100000000.0 10.0.0.15 [] False

r4 default 1 [0, 1, 4] 100000000.0 10.0.0.4 [] True

r7 default 1 [4] 100000000.0 10.0.0.7 ['RM_EIGRP_TO_OSPF'] False

r14 default 1 [0, 3] 100000000.0 10.0.0.14 [] True

r16 default 1 [2] 100000000.0 10.0.0.16 [] False

r11 default 1 [0, 1] 100000000.0 10.0.0.11 [] True

r2 default 1 [0, 1] 100000000.0 10.0.0.2 [] True

r10 default 1 [0, 1] 100000000.0 10.0.0.10 [] True

r5 default 1 [0, 4] 100000000.0 10.0.0.5 [] True

r12 default 1 [3] 100000000.0 10.0.0.12 [] False

r19 default 1 [1] 100000000.0 10.0.0.19 [] False

r3 default 1 [0, 2] 100000000.0 10.0.0.3 [] True

r9 default 1 [0] 100000000.0 10.0.0.9 [] False

r1 default 1 [0, 3] 100000000.0 10.0.0.1 [] True

Last, we can view a string representation of the raw pandas data frame, which is presented in a table-like
format. It’s a long file (38 lines) so we’ll examine the first several lines for brevity.

[ec2-user@devbox bf]# wc outputs/nbrs_brkrst3310.pandas.txt

38 116 1520 outputs1/nbrs_brkrst3310.pandas.txt

[ec2-user@devbox bf]# head -n 15 outputs1/nbrs_brkrst3310.pandas.txt

Interface Remote_Interface

0 r1[Ethernet0/0] r14[Ethernet0/0]

1 r14[Ethernet0/0] r1[Ethernet0/0]

2 r1[Ethernet0/1] r2[Ethernet0/1]

3 r1[Ethernet0/1] r3[Ethernet0/1]

4 r2[Ethernet0/1] r1[Ethernet0/1]

5 r2[Ethernet0/1] r3[Ethernet0/1]

6 r3[Ethernet0/1] r2[Ethernet0/1]

7 r3[Ethernet0/1] r1[Ethernet0/1]

8 r1[Ethernet0/2] r13[Ethernet0/2]

9 r13[Ethernet0/2] r1[Ethernet0/2]

10 r1[Ethernet0/3] r12[Ethernet0/3]

11 r12[Ethernet0/3] r1[Ethernet0/3]

12 r10[Ethernet0/1] r9[Ethernet0/1]

13 r9[Ethernet0/1] r10[Ethernet0/1]

According to the topology, all of this information is correct. Most links are point-to-point connections, such as
those between R1-R14, R1-R13, and R9-R10. Some links are multi-access and contain many neighbors as
seen between R1, R2, and R3 on Ethernet0/1 specifically. Unlike the area, interface, and process outputs,
testing for neighbors goes beyond just parsing a local configuration file. Batfish logically determines how
the routers are connected and provides structured data in response, making it easy to test for compliance
with the expected design.

The advantage of writing a general-purpose script to test Batfish is that you can pass in a variety of snapshot
names. Let’s run another quick test using the second OSPF-focused Cisco Live session we cloned earlier.
The output below reviews the basic process for seeding a snapshot with the proper directories and files.

[ec2-user@devbox bf]# mkdir snapshots/digrst2337/configs/ (snip; make other dirs too)

[ec2-user@devbox bf]# cp ospf_digrst2337/configs/*.txt snapshots/digrst2337/configs/

[ec2-user@devbox bf]# tree snapshots/ --charset==ascii

snapshots/

|-- brkrst3310

| |-- batfish

| |-- configs

| | |-- R10.txt

Copyright 2021 Nicholas Russo http://njrusmc.net 187

http://njrusmc.net


| | |-- R11.txt

| (snip)

| | |-- R8.txt

| | `-- R9.txt

| |-- hosts

| `-- iptables

`-- digrst2337

|-- batfish

|-- configs

| |-- R10.txt

| |-- R11.txt

(snip)

| |-- R8.txt

| `-- R9.txt

|-- hosts

`-- iptables

Then, run the bf.py script and pass in “digrst2337”, the directory name, as a command-line argument.
Some output has been omitted for brevity.

[ec2-user@devbox bf]# python bf.py digrst2337

status: TRYINGTOASSIGN

.... no task information

status: ASSIGNED

.... 2020-12-20 14:56:39.149000+00:00 Begin job.

status: ASSIGNED

.... 2020-12-20 14:56:39.149000+00:00 Parse network configs 1 / 20.

status: ASSIGNED

.... 2020-12-20 14:56:39.149000+00:00 Parse network configs 2 / 20.

(snip)

status: TERMINATEDNORMALLY

.... 2020-12-20 14:56:43.849000+00:00 Begin job.

Last, review the output files generated by the script as it relates to the specified snapshot. For those
interested in scrubbing the data in greater depth, all of these files have been uploaded to their respective
Cisco Live GitHub repositories in the batfish_answers/ directory.

[ec2-user@devbox bf]# ls -1 outputs/*2337*

area_digrst2337.csv

area_digrst2337.html

area_digrst2337.json

area_digrst2337.pandas.txt

intf_digrst2337.csv

intf_digrst2337.html

intf_digrst2337.json

intf_digrst2337.pandas.txt

nbrs_digrst2337.csv

nbrs_digrst2337.html

nbrs_digrst2337.json

nbrs_digrst2337.pandas.txt

proc_digrst2337.csv

proc_digrst2337.html

proc_digrst2337.json

proc_digrst2337.pandas.txt

As a final note, Batfish has uses beyond just network configuration analysis. As evidenced by the empty
directories above, it can trace traffic flows between hosts, even with complex iptables rulesets. More
recently, it can analyze Amazon Web Services (AWS) architectures within a Virtual Private Cloud (VPC)
instance. From a business perspective, integrating Batfish into CI/CD pipelines in a pre-check or post-check
role can reduce risk and rework, both of which reduce operating expenses in the long-term.

Copyright 2021 Nicholas Russo http://njrusmc.net 188

http://njrusmc.net


2.4.12 Data Validation with JSON Schema

Often times, input data must conform to a specific structure in order to function correctly in a given appli-
cation. YANG, a data modeling language discussed earlier in this book, is one way to define the structure
of data. YANG is technically general-purpose and can be used for non-networking applications, but most
real-life usage relates to network automation. One of YANG’s biggest drawbacks is the technical complexity
and subsequent barriers for entry; one does not simply “use YANG” without extensive education and testing,
both on the langauge itself and the associated tooling.

Lightweight frameworks, such as JSON Schema, are attractive alternatives for some developers. Much
like an XML Schema Definition (XSD) file, a JSON schema file defines and enforces the structure of a
given JSON object. The schema file is metadata that is programmatically consumed to ensure structural
compliance before the data is processed. In the context of client-server applications, this is frequently
called “client-side validation” because the data is checked before being transmitted to the server. This book
will use the Python package jsonschema for Python to access these capabilities.

To demonstrate JSON schema in action, consider the Cisco SD-WAN solution, which supports a robust
REST API. In addition to standard CRUD operations, the API supports a flexible query language to extract
real-time performance data. The query structure is described in detail here. The JSON data below is a
valid example of an SD-WAN query. The topmost key of query is required, as are the condition and
rule keys. The strings AND and OR are the only valid options for the condition, signifying “match-all” versus
“match-any” logic, respectively. The rules key contains a list of dictionaries (or “objects” in JSON schema
parlance), which must contain the four keys shown. The remaining top-level keys of size, fields, and
sort are optional, containing additional constraints on the data returned. Also, note that most values are
ultimately strings, whereas some are integers. This particular query is used to collect a subset of vManage
performance statistics (CPU, memory, and disk) over the past one year (52 weeks). Only the newest 3
entries are returned, which is the result of combining a size limit with a descending sort.

[centos@devbox jsonschema]# cat good.json

{

"query": {

"condition": "AND",

"rules": [

{

"field": "entry_time",

"type": "date",

"operator": "last_n_weeks",

"value": ["52"]

},

{

"field": "host_name",

"type": "string",

"operator": "equal",

"value": ["vmanage"]

}

]

},

"size": 3,

"fields": [

"entry_time",

"cpu_user_new",

"mem_util",

"disk_used"

],

"sort": [

{

"field": "entry_time",

"type": "date",

Copyright 2021 Nicholas Russo http://njrusmc.net 189

http://json-schema.org/
https://github.com/Julian/jsonschema
https://sdwan-docs.cisco.com/Product_Documentation/Command_Reference/Command_Reference/vManage_REST_APIs/vManage_REST_APIs_Overview/vManage_Simple_Query
http://njrusmc.net


"order": "desc"

}

]

}

Without JSON schema, we cannot know with certainty whether this HTTP payload is correct or not. Our
only option is to try and send it to a real SD-WAN vManage instance, which serves as the single point
of management for SD-WAN networks. This demonstration uses the Cisco DevNet SD-WAN reservable
sandbox currently running version 19.2, though this may change in the future. The script below is well-
commented and should be self-explanatory for those familiar with Python. In summary, the script takes one
CLI argument representing a JSON file, loads the data, then sends an SD-WAN query via HTTP POST
request using the JSON data as the HTTP body. The HTTP response will either be the requested data
(success), or an error message indicating the problem (failure). Speaking from personal experience, the
SD-WAN query language is complex. Most of the time, any errors are due to a “Bad Request” because the
query payload is malformed. SD-WAN will perform “server-side” validation to reveal the problem.

[centos@devbox jsonschema]# cat send_sdwan_query.py

#!/usr/bin/env python

"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Demonstrate jsonschema to validate Cisco SD-WAN API queries.

"""

import json

import sys

import requests

def main(query_body):

"""

Execution begins here. Requires the HTTP query body as an argument.

"""

# Define base URL, credentials and disable SSL warnings (self-signed cert)

base_url = "https://10.10.20.90:443"

creds = {"j_username": "admin", "j_password": "C1sco12345"}

requests.packages.urllib3.disable_warnings()

# Create session and attempt to authenticate

sess = requests.session()

auth = sess.post(f"{base_url}/j_security_check", data=creds, verify=False)

# Ensure auth succeeded and no HTTP body was returned

if not auth.ok or auth.text:

print("Authentication failed")

sys.exit(1)

# Collect CSRF token (required in version 19.2 and newer)

token = sess.get(f"{base_url}/dataservice/client/token")

token.raise_for_status()

# Success; issue query and print resulting HTTP body

stats = sess.post(

f"{base_url}/dataservice/statistics/system",

json=query_body,

headers={"X-XSRF-TOKEN": token.text},

verify=False,

)

Copyright 2021 Nicholas Russo http://njrusmc.net 190

https://devnetsandbox.cisco.com/
https://devnetsandbox.cisco.com/
http://njrusmc.net


stats_data = stats.json()

print(json.dumps(stats_data.get("data", stats_data), indent=2))

if __name__ == "__main__":

# Load the CLI-specified instance data from file

with open(sys.argv[1], "r") as handle:

instance = json.load(handle)

main(instance)

Running the script with good.json as a CLI argument yields valid output. There are 3 items in the list,
each containing the requested fields, plus a unique identifier string. For reference, the Unix epoch of
1612020225512 is equivalent to 30 January 2021 at approximately 1523 UTC.

[centos@devbox jsonschema]# python send_sdwan_query.py good.json

[

{

"entry_time": 1612020225512,

"disk_used": 666386432,

"cpu_user_new": 2.02,

"mem_util": 0.61,

"id": "AXdT83Tj2joFIJpy0ejW"

},

{

"entry_time": 1612020165495,

"disk_used": 666394624,

"cpu_user_new": 4.04,

"mem_util": 0.61,

"id": "AXdT83Tj2joFIJpy0ejV"

},

{

"entry_time": 1612020105485,

"disk_used": 666386432,

"cpu_user_new": 2.01,

"mem_util": 0.61,

"id": "AXdT83Tj2joFIJpy0ejU"

}

]

Now, suppose we craft an incorrect query. The example below does not include options such as size,
fields, and sort, which is fine. The problem is that the first rule object is missing a value field which is
required.

[centos@devbox jsonschema]# cat bad1.json

{

"query": {

"condition": "AND",

"rules": [

{

"field": "entry_time",

"type": "date",

"operator": "last_n_weeks"

},

{

"field": "host_name",

"type": "string",

"operator": "equal",

"value": ["vmanage"]

}

Copyright 2021 Nicholas Russo http://njrusmc.net 191

http://njrusmc.net


]

}

}

Without client-side validation, supplying this malformed query to our script results in a failure. SD-WAN
graciously tells us the problem, but ideally, our script should handle this input validation for us. Some
applications won’t tell you anything useful, which complicates troubleshooting, and further reinforces the
need for client-side validation.

[centos@devbox jsonschema]# python send_sdwan_query.py bad1.json

{

"error": {

"type": "error",

"message": "Invalid query",

"details": "At least one value should preset.",

"code": "ELASTIC0007"

}

}

Writing custom Python code to enforce data compliance is a common practice and something the author has
personally done frequently, but that is often a heavy-handed approach. For an example of this approach,
check out the narc project. Instead, we’ll solve this client-side validation problem using the jsonschema

package discussed earlier. First, install via pip:

[centos@devbox netbox_ansible]# pip install jsonschema

Collecting jsonschema

(snip)

Successfully installed jsonschema-3.2.0

The schema file below can be used to check our query payloads before issuing API requests. At the top of
the file, it’s common to see a definitions block which defines reusable types. In SD-WAN, the type key is
used both for rule matching and sorting specifications, so to avoid copy/paste, we can define a reusuable
type definition named value_type. Moving into the schema itself, the top-most item is an object, which
really means “dictionary”. Then, there is a query property, also an object, which has a condition property.
The strings AND and OR are enumerated as the only valid options for this string-typed field. Then, there is
an array (or list) of rules. Each item is an object (dictionary) with a variety of properties. Notice the type

property references the custom type definition described earlier. Again, be sure to reference the official
documentation referenced earlier when building your schema files.

Rather than explain every property, we’ll focus on a few other notable aspects. First, the required key
specifies a list of strings, identifying which properties are required. By default, all properties are assumed
to be optional, and specifying mandatory fields empowers JSON schema to validate more than just the
values themselves. The size property is an integer in a range of 1 to 65,535 with a default value of
10,000 (unsigned 16 bit integer). While 10,000 is indeed the default value per the SD-WAN documentation,
the author arbitrarily set minimum and maximum limits for demonstration purposes only. Additionally, any
element can be documented/commented using the description key. This schema is sparsely commented
for brevity, but in real life, all fields should have adequate descriptions. Other annotation keys, such as
title and examples, can be used within the schema alongside description and default.

[centos@devbox jsonschema]# cat schema.json

{

"definitions": {

"value_type": {

"type": "string",

"description": "Specify the type of queried value",

"enum": ["date", "double", "int", "long", "string"]

}

},

Copyright 2021 Nicholas Russo http://njrusmc.net 192

https://github.com/nickrusso42518/narc
http://njrusmc.net


"type": "object",

"properties": {

"query": {

"type": "object",

"properties": {

"condition": {"type": "string", "enum": ["AND", "OR"]},

"rules": {

"type": "array",

"items": {

"type": "object",

"properties": {

"type": {"$ref": "#/definitions/value_type"},

"field": {"type": "string"},

"operator": {"type": "string"},

"value": {"type": "array", "items": {"type": "string"}}

},

"required": ["type", "field", "operator", "value"]

}

}

},

"required": ["condition", "rules"]

},

"size": {

"type": "integer",

"minimum": 1,

"maximum": 65535,

"default": 10000

},

"fields": {

"type": "array",

"items": {"type": "string", "description": "Column names to collect"}

},

"sort": {

"type": "array",

"items": {

"type": "object",

"properties": {

"type": {"$ref": "#/definitions/value_type"},

"field": {"type": "string"},

"order": {"type": "string", "enum": ["asc", "desc"]}

}

}

}

},

"required": ["query"]

}

The jsonschema package can be used in two separate ways:

1. Via the shell by using the jsonschema command

2. In a Python script by importing jsonschema

The shell option is useful for quickly validating a data payload, known more generally as an “instance”,
against the schema file. When an instance is compliant, no output is returned and the return code is 0.
This indicates success and the return code makes this useful in CI/CD pipelines. However, checking the
malformed data reveals a missing required property and results in a non-zero return code.

[centos@devbox jsonschema]# jsonschema --instance good.json schema.json

[centos@devbox jsonschema]# echo $?

Copyright 2021 Nicholas Russo http://njrusmc.net 193

http://njrusmc.net


0

[centos@devbox jsonschema]# jsonschema --instance bad1.json schema.json

{'field': 'entry_time', 'type': 'date', 'operator': 'last_n_weeks'}: 'value' is a required property

[centos@devbox jsonschema]# echo $?

1

The Python option is useful for integrating data validation into more complex applications or client scripts.
Let’s enhance our existing Python script using jsonschema as shown below. Note that the main() function
remains unchanged and has been omitted for brevity. This time, we load in the JSON schema file in addition
to the instance data, then use the validate() function, passing in both instance and schema data.

[centos@devbox jsonschema]# cat send_sdwan_query.py

#!/usr/bin/env python

"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Demonstrate jsonschema to validate Cisco SD-WAN API queries.

"""

import json

import sys

import requests

import jsonschema # new!

def main(query_body):

# snip; no changes from previous version

if __name__ == "__main__":

# Load the fixed schema data from file

with open("schema.json", "r") as handle:

schema = json.load(handle)

# Load the CLI-specified instance data from file

with open(sys.argv[1], "r") as handle:

instance = json.load(handle)

# Perform validation and issue query to API upon success

jsonschema.validate(instance=instance, schema=schema)

main(instance)

For brevity, this book won’t show another successful sample run using the good.json input; that still works.
Instead, let’s run the updated script with bad1.json, which we expect to fail. This time, validate() inter-
cepts the bogus data before sending an API request to SD-WAN, which leads to a faster failure (reduced
network testing time) and less network/compute load (no need to bother the server).

[centos@devbox jsonschema]# python send_sdwan_query.py bad1.json

Traceback (most recent call last): (snip)

jsonschema.exceptions.ValidationError: 'value' is a required property

Failed validating 'required' in schema['properties']['query']['properties']['rules']['items']:

{'properties': {'field': {'type': 'string'},

'operator': {'type': 'string'},

'type': {'$ref': '#/definitions/value_type'},

'value': {'items': {'type': 'string'},

'type': 'array'}},

'required': ['type', 'field', 'operator', 'value'],

'type': 'object'}

Copyright 2021 Nicholas Russo http://njrusmc.net 194

http://njrusmc.net


On instance['query']['rules'][0]:

{'field': 'entry_time', 'operator': 'last_n_weeks', 'type': 'date'}

It’s worth examining a few other malformed payloads for completeness. Consider the query below. It has
two errors:

1. The condition of XOR is not a valid choice

2. The size of -1 is outside of the specified range

[centos@devbox jsonschema]# cat bad2.json

{

"query": {

"condition": "XOR",

"rules": [

{

"field": "entry_time",

"type": "date",

"operator": "last_n_weeks",

"value": ["52"]

},

{

"field": "host_name",

"type": "string",

"operator": "equal",

"value": ["vmanage"]

}

]

},

"size": -1

}

Running the bad2.json file through both the CLI tool and Python script, we confirm that the query is invalid.
Note that the CLI tool generally displays all schema violations while the Python package only displays one.
This is likely because the first violation discovered is enough to raise the ValidationError, halting the
process.

[centos@devbox jsonschema]# jsonschema --instance bad2.json schema.json

XOR: 'XOR' is not one of ['AND', 'OR']

-1: -1 is less than the minimum of 1

[centos@devbox jsonschema]# python send_sdwan_query.py bad2.json

Traceback (most recent call last): (snip)

jsonschema.exceptions.ValidationError: -1 is less than the minimum of 1

Failed validating 'minimum' in schema['properties']['size']:

{'default': 10000, 'maximum': 65535, 'minimum': 1, 'type': 'integer'}

On instance['size']:

-1

Last, consider a file with three errors:

1. The operator property is missing from the first rule

2. The value of 42518 should be a string, but is an integer

3. The size of "big" should be an integer, but is an string

[centos@devbox jsonschema]# cat bad3.json

Copyright 2021 Nicholas Russo http://njrusmc.net 195

http://njrusmc.net


{

"query": {

"condition": "AND",

"rules": [

{

"field": "entry_time",

"type": "date",

"value": ["52"]

},

{

"field": "host_name",

"type": "string",

"operator": "equal",

"value": [42518]

}

]

},

"size": "big"

}

Running the bad3.json query through our validation tools yields the expected results as shown below.

[centos@devbox jsonschema]# jsonschema --instance bad3.json schema.json

{'field': 'entry_time', 'type': 'date', 'value': ['52']}: 'operator' is a required property

42518: 42518 is not of type 'string'

big: 'big' is not of type 'integer'

[centos@devbox jsonschema]# python send_sdwan_query.py bad3.json

Traceback (most recent call last): (snip)

jsonschema.exceptions.ValidationError: 'big' is not of type 'integer'

Failed validating 'type' in schema['properties']['size']:

{'default': 10000, 'maximum': 65535, 'minimum': 1, 'type': 'integer'}

On instance['size']:

'big'

JSON schema has many additional capabilities beyond what has been discussed in this document. Rather
than detail every feature, try using JSON schema in your own projects instead of developing complex,
conditional-based data validation in your source code. Also, note that while the we call it “JSON” schema,
all of these files could be in a different format, such as YAML, and they would still work with the Python
method (but not the CLI method). For automation frameworks that rely primarily on YAML files for variables
and inventories, such as Ansible and Nornir, a pre-validation script could load data from YAML, then pass
the structured data into validate() for processing. In most cases, sticking with pure JSON is often simpler.

2.4.13 Pre/Post Checks with Cisco pyATS and Genie

Cisco pyATS is a test framework that is often used to manage infrastructure, perform pre-change and post-
change network checks, and conduct product validation testing while new products in development. It is
similar to Ansible and Nornir except much more powerful and subsequently, more heavyweight. Cisco
pyATS is often coupled with Cisco Genie, which is a collection of pre-written utilities such as parsers and
verification processes to simplify network automation. Within Cisco, these tools are used extensively for
product development testing and have been in use for many years. Said another way, pyATS and Genie are
well-used and mature.

Before discussing pyATS and Genie, know that these are two separate projects that are both tightly inte-
grated and capable of operating independently. As a test framework, pyATS can be used to model any
kind of software testing, much like the well-known pytest or unittest frameworks. Genie has already been

Copyright 2021 Nicholas Russo http://njrusmc.net 196

http://njrusmc.net


integrated into existing network automation projects such as Netmiko and Ansible without any pyATS in-
volvement. The author has personally leveraged Genie outside of pyATS in both of these contexts. The
documentation for Cisco pyATS and Cisco Genie can be found using these hyperlinks. Note that some
Genie features, such as triggers and verifications, only work in conjunction with pyATS. The more basic
Genie functionality, such as learning and parsing, can operate in standalone or in conjunction with pyATS.

This section explores a comprehensive example that demonstrates various pyATS and Genie features to
validate the correct behavior of a leaf/spine network. This isn’t purely theoretical; the author worked on
a similarly designed network and developed Ansible code to perform many of the same BGP and OSPF
verifications demonstrated with pyATS/Genie in this document. The diagram below illustrates the network
design. There are 6 total routers running OSPF in area 0. R1/R2 are BGP route-reflectors, R3/R4 are BGP-
free spine routers, and R5/R6 are leaf routers. The LAN segments with servers on them are advertised
exclusively using BGP as OSPF is only used for BGP next-hop lookups. The network runs MPLS to enable
the spines to be BGP-free, but verifying MPLS is out of scope for this document.

Figure 70: pyATS Testbed Network

The primary test engine of the pyATS frame is “aetest”. This provides a test architecture consisting of the
typical items, such as setup, cleanup (teardown), and intermediate test cases. Using aetest automatically
displays using console logging and handles the test sequencing. The high-level test plan for this sample
network is as follows:

1. Setup: connect to all devices

2. Test OSPF connectivity

3. Test BGP connectivity

4. Cleanup: disconnect from all devices

Because pyATS is such a large project, engineers have the option of installing only the core functionality, the
full functionality, or a subset between these two extremes. The example below installs all pyATS features,
along with Genie, and you can see it’s quite a long package list.

(pyats) [root@devbox ls_pyats]# cat requirements.txt

pyats[full]

genie

(pyats) [root@devbox ls_pyats]# pip install -r requirements.txt

Copyright 2021 Nicholas Russo http://njrusmc.net 197

https://developer.cisco.com/docs/pyats/
https://developer.cisco.com/docs/genie-docs/
http://njrusmc.net


Collecting pyats[full]

Using cached pyats-21.9-cp37-cp37m-manylinux1_x86_64.whl (2.7 MB)

Collecting genie

Using cached genie-21.9-cp37-cp37m-manylinux1_x86_64.whl (21.0 MB)

Collecting pyats.aetest<21.10.0,>=21.9.0

Using cached pyats.aetest-21.9-cp37-cp37m-manylinux1_x86_64.whl (5.8 MB)

Collecting pyats.async<21.10.0,>=21.9.0

Using cached pyats.async-21.9-cp37-cp37m-manylinux1_x86_64.whl (559 kB)

(snip)

Successfully installed PrettyTable-2.2.1 aiofiles-0.7.0 aiohttp-3.7.4.post0

aiohttp-swagger-1.0.15 arrow-1.2.0 async-lru-1.0.2 async-timeout-3.0.1

attrs-21.2.0 backports.ssl-0.0.9 binaryornot-0.4.4 certifi-2021.10.8

cffi-1.15.0 chardet-4.0.0 charset-normalizer-2.0.7 click-8.0.3

cookiecutter-1.7.3 cryptography-35.0.0 dill-0.3.4 distro-1.6.0 genie-21.9

genie.libs.clean-21.9.3 genie.libs.conf-21.9 genie.libs.filetransferutils-21.9

genie.libs.health-21.9.1 genie.libs.ops-21.9 genie.libs.parser-21.9

genie.libs.robot-21.9 genie.libs.sdk-21.9 genie.telemetry-21.9

genie.trafficgen-21.9 idna-3.3 importlib-metadata-4.8.1 ixnetwork-9.0.1915.16

ixnetwork-restpy-1.1.2 jinja2-2.11.3 jinja2-time-0.2.0 jsonpickle-2.0.0

junit-xml-1.9 markupsafe-1.1.1 multidict-5.2.0 netaddr-0.8.0 pathspec-0.9.0

poyo-0.5.0 psutil-5.8.0 pyats-21.9 pyats.aereport-21.9 pyats.aetest-21.9

pyats.async-21.9 pyats.connections-21.9 pyats.contrib-21.9

pyats.datastructures-21.9 pyats.easypy-21.9 pyats.kleenex-21.9 pyats.log-21.9

pyats.reporter-21.9 pyats.results-21.9 pyats.robot-21.9 pyats.tcl-21.9

pyats.topology-21.9 pyats.utils-21.9 pycparser-2.20 pyftpdlib-1.5.6

pyopenssl-21.0.0 python-dateutil-2.8.2 python-engineio-3.14.2

python-slugify-5.0.2 python-socketio-4.6.1 pyyaml-6.0 requests-2.26.0

requests-toolbelt-0.9.1 robotframework-4.1.2 ruamel.yaml-0.17.16

ruamel.yaml.clib-0.2.6 six-1.16.0 text-unidecode-1.3 tftpy-0.8.0 tqdm-4.62.3

typing-extensions-3.10.0.2 unicon-21.9 unicon.plugins-21.9 urllib3-1.26.7

wcwidth-0.2.5 websocket-client-1.2.1 wheel-0.37.0 xlrd-1.2.0 xlsxwriter-3.0.1

xlwt-1.3.0 xmltodict-0.12.0 yamllint-1.26.3 yarl-1.7.0 zipp-3.6.0

After installation, create a pyATS testbed, which is comparable to an Ansible or Nornir inventory. This is
defined in YAML syntax and is self-explanatory for the most part. The testbed lacks an explicit grouping
mechanism as is present in the aforementioned tools, but supports the concept of “default” value specifica-
tions in various spots. In this example, all devices use a username of pyats and a password of pyats and
therefore this need not be repeated under each device. Note that each device is almost identical except
with a different hostname (which must match the CLI hostname), different IP address, and different type.
The word “type” in this context is used as a role, which can be route-reflector (rr), spine, or leaf.

(pyats) [root@devbox ls_pyats]# cat testbed.yml

---

testbed:

name: "leafspine"

credentials:

default:

username: "pyats"

password: "pyats"

devices:

R1:

os: "ios"

platform: "iol"

type: "rr"

connections:

vty:

protocol: "telnet"

Copyright 2021 Nicholas Russo http://njrusmc.net 198

http://njrusmc.net


ip: "192.168.0.1"

R2:

os: "ios"

platform: "iol"

type: "rr"

connections:

vty:

protocol: "telnet"

ip: "192.168.0.2"

R3:

os: "ios"

platform: "iol"

type: "spine"

connections:

vty:

protocol: "telnet"

ip: "192.168.0.3"

R4:

os: "ios"

platform: "iol"

type: "spine"

connections:

vty:

protocol: "telnet"

ip: "192.168.0.4"

R5:

os: "ios"

platform: "iol"

type: "leaf"

connections:

vty:

protocol: "telnet"

ip: "192.168.0.5"

R6:

os: "ios"

platform: "iol"

type: "leaf"

connections:

vty:

protocol: "telnet"

ip: "192.168.0.6"

...

In some pyATS testbed examples, you might observe a topology key. Manually specifying the topology
allows pyATS to further validate the layer-1 connectivity of the network. This is irrelevant for the present
example and is therefore omitted. In a production environment, it is recommended to define this topology
so that pyATS knows “what right looks like”.

To dynamically populate the topology given a defined set of devices from a partial testbed, you can use one
of the many open-source creators available through the contrib subset of pyATS functionality.

In addition to providing various Python-based test and parsing libraries for consumption in custom projects,
a subset of pyATS functionality can be invoked by the CLI. With the testbed complete, it’s wise to validate it
using the command below. The --connect option tells pyATS to connect to each device using the creden-
tials and protocols specified for each device. Omitting this option allows pyATS to run a faster, local-only
syntax check.

(pyats) [root@devbox ls_pyats]# pyats validate testbed testbed.yml --connect

Loading testbed file: testbed.yml

--------------------------------------------------------------------------------

Copyright 2021 Nicholas Russo http://njrusmc.net 199

https://github.com/CiscoTestAutomation/pyats.contrib/tree/master/src/pyats/contrib/creators
http://njrusmc.net


Testbed Name:

leafspine

Testbed Devices:

.

|-- R1 [ios/iol]

|-- R2 [ios/iol]

|-- R3 [ios/iol]

|-- R4 [ios/iol]

|-- R5 [ios/iol]

`-- R6 [ios/iol]

YAML Lint Messages

------------------

Connection Check

----------------

note that connection checks are not 100% accurate - it does not take

into account that connection implementations may choose to interpret

the entire connection block differently.

For example - Unicon autouses A/B console/standby, but does not allow

explicit connection to B.

- R1/vty [PASSED]

- R2/vty [PASSED]

- R3/vty [PASSED]

- R4/vty [PASSED]

- R5/vty [PASSED]

- R6/vty [PASSED]

Warning Messages

----------------

- Device 'R1' has no interface definitions

- Device 'R2' has no interface definitions

- Device 'R3' has no interface definitions

- Device 'R4' has no interface definitions

- Device 'R5' has no interface definitions

- Device 'R6' has no interface definitions

This indicates that pyATS is able to connect to each network device. The warnings indicate that the testbed
does not contain any topology information, which is irrelevant for this demonstration. Other pyATS function-
ality is available from the CLI, such as parse, learn, and run. These CLI options are not discussed in this
document because they are inherently used within the Python project instead.

When designing test cases, it’s best to start by defining the common setup and common cleanup tasks.
These are the overarching steps that are run before all test cases (common setup) and after all test cases
(common cleanup). The setup tasks may include input validation, loading the topology, and connecting to
each device. The teardown tasks are often limited to disconnecting from the devices and erasing temporary
data.

The aetest implementation is object-oriented and requires inheriting from a pair of self-evident base classes.
Then, programmers can define functions decorated with @aetest.subsection to identify individual steps in
the common setup and common teardown processes. The example classes below connect to and discon-
nect from the testbed. Note that the methods in the class take in the testbed object as a parameter. In order
for everything to work, each class within the aetest project must do this. To better organize the project, the
test_project/ directory contains all setup, cleanup, and test case code.

Copyright 2021 Nicholas Russo http://njrusmc.net 200

http://njrusmc.net


(pyats) [root@devbox ls_pyats]# ls -l test_project/

total 16

-rw-r--r-- 1 root root 3637 Jul 3 23:15 bgp_test.py

-rw-r--r-- 1 root root 684 Jul 3 23:13 common.py

-rw-r--r-- 1 root root 4941 Jul 3 23:15 ospf_test.py

The common.py file contains both the common setup and cleanup code. Note that CLI output logging is
disabled; this mirrors the router’s CLI output to the screen which generates unnecessary clutter for this
project.

(pyats) [root@devbox ls_pyats]# cat test_project/common.py

#!/usr/bin/env python

"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Common setup/cleanup code for project.

"""

from pyats import aetest

class LeafSpineCommonSetup(aetest.CommonSetup):

@aetest.subsection

def connect(self, testbed):

"""Connect to devices in testbed"""

testbed.connect(log_stdout=False)

class LeafSpineCommonCleanup(aetest.CommonCleanup):

@aetest.subsection

def disconnect(self, testbed):

"""Disonnect from devices in testbed"""

testbed.disconnect(log_stdout=False)

Next, define the test cases. Let’s begin with OSPF, and note that each test case has its own optional setup
and teardown functions. Defining those first helps avoid any connectivity problems when writing individual
tests. In this example, the setup process takes in the testbed object (all classes must) and uses the learn()

function to collect all OSPF information for each device. This is a Genie feature that issues CLI commands,
collects the text output, and parses that output into structured data. For those familiar with NAPALM,
the concept is comparable to “getters” which are used to collect information about a topic. The data is
formatted in a common structure across products, providing a uniform interface for programmers. Once the
script “learns” about OSPF in the network, the self.data dictionary is keyed by hostname whereby the
value is the “learned” OSPF data. As an immediate check, the code ensures each router is running OSPF
process ID 1 and no others. If this isn’t true, extracting data for comparative purposes later in the class will
become difficult. Using Python assert is the proper mechanism for testing conditions as aetest catches
AssertionErrors.

(pyats) [root@devbox ls_pyats]# cat test_project/ospf_test.py

#!/usr/bin/env python

"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Define OSPF-related tests.

"""

import logging

from pyats import aetest

Copyright 2021 Nicholas Russo http://njrusmc.net 201

http://njrusmc.net


class OSPFTestcase(aetest.Testcase):

@aetest.setup

def setup(self, testbed):

"""Perform setup for OSPF testing"""

# Store the testbed object and an empty data dict for OSPF data

self.testbed = testbed

self.data = {}

# Store the logger and set logging level to augment aetest logging

self.logger = logging.getLogger(__name__)

self.logger.setLevel(logging.INFO)

# Loop over devices and learn OSPF data from each

for name, device in testbed.devices.items():

self.logger.info(name)

learned = device.learn("ospf").to_dict()

ospf = learned["info"]["vrf"]["default"]["address_family"]["ipv4"]

# Ensure there is exactly one OSPF PID and that the value is 1

# This is placed in setup; test cases cannot continue otherwise

assert len(ospf["instance"]) == 1

inst1 = ospf["instance"].get("1")

assert isinstance(inst1, dict)

self.data[name] = inst1

# Sanity check; ensure new dict contains proper number of devices

assert len(self.data) == len(testbed.devices)

The teardown isn’t particularly interesting and could be omitted, but for completeness, a manual deletion
of the data dictionary is illustrated. If an environment uses a shared (that is, not dedicated and/or not
ephemeral) testbed, the cleanup phase can restore the testbed to its original condition. This may include
restoring default configurations, downgrading network operating systems, or powering off devices to con-
serve electricity.

@aetest.cleanup

def cleanup(self):

"""Cleanup after OSPF testing"""

del self.data

It’s worth examining a subset of the self.data dictionary. This book does not print the entire structure as it
is very extensive. The format is deeply hierarchical, which is programmatically easy to traverse.

{

"R4": {

"router_id": "10.0.0.4",

"areas": {

"0.0.0.0": {

"interfaces": {

"Ethernet0/0": {

"name": "Ethernet0/0",

"interface_type": "point-to-point",

"passive": false,

"demand_circuit": false,

"transmit_delay": 1,

"bfd": {

"enable": false

},

"hello_interval": 10,

Copyright 2021 Nicholas Russo http://njrusmc.net 202

http://njrusmc.net


"dead_interval": 40,

"retransmit_interval": 5,

"lls": true,

"enable": true,

"cost": 10,

"state": "point-to-point",

"hello_timer": "00:00:08",

"neighbors": {

"10.0.0.1": {

"neighbor_router_id": "10.0.0.1",

"address": "10.1.4.1",

"dr_ip_addr": "0.0.0.0",

"bdr_ip_addr": "0.0.0.0",

"state": "full",

"dead_timer": "00:00:31",

"statistics": {

"nbr_event_count": 12,

"nbr_retrans_qlen": 0

}

}

}

},

"Ethernet0/1": {

"name": "Ethernet0/1",

"interface_type": "point-to-point",

The tests defined in the class should be highly customized to your specific business problem and not a
mindless copy/paste from public examples. Ensure that every test has a specific business purpose. The
examples in this book reflect the real-life tests implemented in a production network upon which the author
worked. First, ensure there are no duplicate OSPF router IDs. The logic includes looping over all the OSPF
data for each host and extracting the router ID. These are added to a list, and when that list is converted
to a set, they should be equal length. Because sets cannot contain duplicate values, this is a simple and
efficient way to ensure uniqueness. Also, notice the custom log message which prints the device name.
This is displayed in the pyATS execution output which indicates the device being processed. This simple
technique is an easy way to customize projects.

@aetest.test

def check_unique_rid(self):

"""Ensure each router has a unique RID in the range of 10.0.0.x"""

rid_list = []

for name, ospf in self.data.items():

self.logger.info(name)

rid = ospf.get("router_id")

assert rid.startswith("10.0.0.")

rid_list.append(rid)

# Length of list and length of set must match (no duplicates)

assert len(rid_list) == len(set(rid_list))

Following the hierarchy, let’s check the OSPF areas. This is a flat area 0 network, which means every device
should have exactly one area defined that has the value of “0.0.0.0”.

@aetest.test

def check_areas(self):

"""Ensure there is exactly one OSPF area with value of 0.0.0.0"""

for name, ospf in self.data.items():

self.logger.info(name)

assert len(ospf["areas"]) == 1

Copyright 2021 Nicholas Russo http://njrusmc.net 203

http://njrusmc.net


area0 = ospf["areas"].get("0.0.0.0")

assert isinstance(area0, dict)

It’s usually a good idea to ensure OSPF interfaces are configured correctly. In this network, every interface
is point-to-point, has a cost of 10, and should have exactly one neighbor. Be sure to exclude any passive or
non-neighbor-capable interfaces like loopbacks and LAN segments.

@aetest.test

def check_interfaces(self):

"""Ensure each non-Loopback interface is P2P with cost of 10"""

for name, ospf in self.data.items():

self.logger.info(name)

area0 = ospf["areas"]["0.0.0.0"]

for intf, attrs in area0["interfaces"].items():

if not intf.startswith("Loopback"):

self.logger.info(intf)

assert attrs["cost"] == 10

assert attrs["interface_type"] == "point-to-point"

Next, let’s ensure that all OSPF neighbors are up and in the “full” state. The logic is similar to the previous
example except with different pieces of data being extracted and compared.

@aetest.test

def check_neighbors_state(self):

"""Ensure each non-Loopback interface has exactly 1 FULL neighbor"""

for name, ospf in self.data.items():

self.logger.info(name)

area0 = ospf["areas"]["0.0.0.0"]

for intf, attrs in area0["interfaces"].items():

if not intf.startswith("Loopback"):

self.logger.info(intf)

assert len(attrs["neighbors"]) == 1

nbrs = list(attrs["neighbors"].values())

assert nbrs[0]["state"] == "full"

So far, the OSPF tests have been pretty basic. Given the leaf/spine topology, we can draw some logical
conclusions about what the OSPF network should look like, then build tests to verify the conclusions. Given
X leaves and Y spines:

1. Each spine must have exactly X neighbors

2. Each leaf (non-spine) must have exactly Y neighbors

This is where the device “type” becomes relevant. Because route-reflectors are just a type of leaf, we’ll use
the term “non-spines” to encompass both type “rr” and type “leaf”. Because the logic for both spine and
non-spine testing is identical and only requires a variation in inputs, let’s define a reusable helper function
to perform the logic. The _count_neighbors() function is not decorated with aetest.test because it is
not a test. The two tests defined assert the aforementioned conditions are satisfied. Using a dictionary
comprehension, each test extracts a subset of the testbed devices, similar to Nornir inventory filtering,
based on the device type. The non-spines test matches any type not equal to “spine” while the spines
test matches only the “spine” type. These two testbed device subsets are strictly complementary (mutually
exclusive) while also being collectively exhaustive (all devices are tested; none are omitted).

@aetest.test

def check_neighbors_count_nonspines(self):

"""Ensure each leaf/RR has a neighbor count equal to spine count"""

# Use a dict comprehension to select non-spines ("leaf" or "rr")

nonspines = {

Copyright 2021 Nicholas Russo http://njrusmc.net 204

http://njrusmc.net


name: ospf

for name, ospf in self.data.items()

if self.testbed.devices[name].type != "spine"

}

self._count_neighbors(nonspines)

@aetest.test

def check_neighbors_count_spines(self):

"""Ensure each spine has a neighbor count equal to leaf/RR count"""

# Use a dict comprehension to select spines

spines = {

name: ospf

for name, ospf in self.data.items()

if self.testbed.devices[name].type == "spine"

}

self._count_neighbors(spines)

def _count_neighbors(self, subdict):

"""Helper function to generalize neighbor counting process"""

# Iterate over devices in the subdict

for name, ospf in subdict.items():

area0 = ospf["areas"]["0.0.0.0"]

# Count neighbors on all interfaces

num_nbrs = 0

for intf, attrs in area0["interfaces"].items():

if not intf.startswith("Loopback"):

num_nbrs += len(attrs["neighbors"])

# Number of uncaptured devices is the difference from the whole set

self.logger.info("%s: %s", name, num_nbrs)

num_desired = len(self.testbed.devices) - len(subdict)

assert num_desired == num_nbrs

For variety, the BGP tests will illustrate different techniques. While the Genie learn() technique is easy
and automatic, it has some drawbacks:

1. It is heavyweight; relatively slow to run and memory-intensive.

2. It may not capture everything required for your specific test.

3. The data captured (and its structure) may vary over time.

Alternatively, Genie parsers can be manually invoked using the parse() function. Specify the command
to run on each device, ensuring that the command is supported by Genie by checking the documentation.
Genie has excellent command coverage but it does not cover everything. There’s no rule against manually
modifying the parsed data returned by Genie to better suit your test environment. Note that a dictionary
comprehension is used to filter the testbed device inventory down to only non-spines. The spines do not
run BGP in this design and so should be excluded for any BGP tests or data collection. To simply the
data, the code filters out the unnecessary vrf and default keys to help flatten the dictionary. This level of
hierarchy exists because Genie supports multi-VRF operations, but in this specific network, it’s irrelevant.
Additionally, the local BGP ASN and device type are added to each device-specific subdictionary (which
like OSPF are keyed by hostname). Last, since IPv4 unicast is the only AFI/SAFI in this network, the
unnecessary address_family and ipv4 unicast keys are flattened from each neighbor. Again, use caution
when manually manipulating standardized data structures, especially in dynamic business environments
that support rapidly changing networks.

#!/usr/bin/env python

Copyright 2021 Nicholas Russo http://njrusmc.net 205

http://njrusmc.net


"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Define BGP-related tests.

"""

import logging

from pyats import aetest

class BGPTestcase(aetest.Testcase):

@aetest.setup

def setup(self, testbed):

"""Perform setup for BGP testing"""

# Store the testbed object and an empty data dict for BGP data

self.testbed = testbed

self.data = {}

# Store the logger and set logging level to augment aetest logging

self.logger = logging.getLogger(__name__)

self.logger.setLevel(logging.INFO)

# Use a dict comprehension to select non-spines ("leaf" or "rr")

nonspines = {

name: device

for name, device in self.testbed.devices.items()

if device.type != "spine"

}

# Loop over devices and collect BGP summary data

for name, device in nonspines.items():

self.logger.info(name)

parsed = device.parse("show bgp ipv4 unicast summary")

# Modify the structure; "neighbor", "local_asn", and "type" top keys

self.data[name] = parsed["vrf"]["default"]

self.data[name]["local_asn"] = parsed["bgp_id"]

self.data[name]["type"] = device.type

# Remove the unnecessary intermediate AFI/SAFI to simplify tests

for nbr, attr in self.data[name]["neighbor"].items():

self.data[name]["neighbor"][nbr] = attr[

"address_family"]["ipv4 unicast"]

# Sanity check; ensure new subdict contains exactly 3 keys

assert len(self.data[name]) == 3

# Sanity check; ensure new dict contains proper number of devices

assert len(self.data) == len(nonspines)

As a quick comparison, here is the data returned from the parse() function without any manipulation. Some
fields have been omitted for brevity.

{

"bgp_id": 65000,

"vrf": {

"default": {

"neighbor": {

Copyright 2021 Nicholas Russo http://njrusmc.net 206

http://njrusmc.net


"10.0.0.5": {

"address_family": {

"ipv4 unicast": {

"version": 4,

"as": 65000,

"msg_rcvd": 75,

"msg_sent": 75,

"tbl_ver": 22,

"input_queue": 0,

"output_queue": 0,

"up_down": "01:02:24",

"state_pfxrcd": "5"

}

}

}

},

"10.0.0.6": {

"address_family": {

"ipv4 unicast": {

"version": 4,

"as": 65000,

"msg_rcvd": 75,

"msg_sent": 75,

"tbl_ver": 22,

"input_queue": 0,

"output_queue": 0,

"up_down": "01:03:52",

"state_pfxrcd": "6",

Post-manipulation, the data is much flatter and easier to manage, even after adding the top-level keys for
the device names. This will reduce the overall amount of code (and memory) required by the project, but
the customization of data makes the solution less standardized and possibly more difficult to troubleshoot.
Weigh these trade-offs carefully.

{

"R6": {

"neighbor": {

"10.0.0.1": {

"version": 4,

"as": 65000,

"msg_rcvd": 79,

"msg_sent": 79,

"tbl_ver": 22,

"input_queue": 0,

"output_queue": 0,

"up_down": "01:07:49",

"state_pfxrcd": "5"

},

"10.0.0.2": {

"version": 4,

"as": 65000,

"msg_rcvd": 82,

"msg_sent": 80,

"tbl_ver": 22,

"input_queue": 0,

"output_queue": 0,

"up_down": "01:08:49",

"state_pfxrcd": "5",

Rather than simply repeat the OSPF-related tests for BGP, such as ensuring BGP router IDs are unique

Copyright 2021 Nicholas Russo http://njrusmc.net 207

http://njrusmc.net


and ensuring neighbors are up, let’s do something different. The first test will ensure all BGP routers are in
the same ASN. This guarantees that all sessions are iBGP (as designed) and uses inverted logic compared
to the OSPF unique router ID test. The local BGP ASN is collected from each device and added to a set.
Sets cannot contain duplicates, so after each device is processed, the set should have exactly one element
in it, which is the BGP ASN. The script doesn’t care what the value is, only that there is exactly one value.
Designing your tests to be dynamic in this way makes them more reusable at the cost of being less specific.

@aetest.test

def check_same_asn(self):

"""Ensure each router is in the same BGP ASN"""

asn_set = set()

for name, bgp in self.data.items():

self.logger.info(name)

asn_set.add(bgp["local_asn"])

# Only one element in the set indicates iBGP everywhere

assert len(asn_set) == 1

Next, we’ll apply some advanced BGP design knowledge to ensure each BGP speaker has the correct
number of routes. The route-reflectors are in the same cluster, not because they have the same cluster ID
(they don’t), but because they service the same set of clients. As such, we can conclude the following:

1. Leaves must receive the same number of routes from each route-reflector

2. Route-reflectors must receive the same number of routes from each leaf

In this network, R5 originates 5 routes into BGP and R6 originates 6 routes into BGP. That means R5
should learn 6 routes from both R1 and R2, which were reflected from R6. R6 should learn 5 routes for the
same reason. R1 and R2 will learn 5 routes from R5 and 6 routes from R6. The simpler condition to test
is the first one. Since the leaves only peer to the route-reflectors, the test only needs to examine the local
state_pfxrcd value for each peer on a given leaf. The log message includes both the neighbor IP and
prefix count, making it easy to visualize any discrepancies in the script output.

@aetest.test

def check_prefix_count_leaf(self):

"""Ensure each leaf learns the same number of routes from each RR"""

for name, bgp in self.data.items():

pfx_set = set()

if bgp["type"] == "leaf":

self.logger.info(name)

for nbr, attr in bgp["neighbor"].items():

pfx = attr["state_pfxrcd"]

pfx_set.add(pfx)

self.logger.info("%s: %s", nbr, pfx)

# Only one set element per device is proper RR cluster design

assert len(pfx_set) == 1

The route-reflector logic is more complex. All route-reflectors must learn the same number of prefixes
from each leaf, but this must be compared across the route-reflectors. For this, a dictionary keyed off the
neighbor IP (leaves) with a value of a set works well. Each route-reflector has the state_pfxrcd value
written to the set on a per-neighbor basis, and the script ensures that each set, has exactly one value.

@aetest.test

def check_prefix_count_rr(self):

"""Ensure the RRs learn a consistent number of routes from each leaf"""

pfx_dict = {}

for name, bgp in self.data.items():

Copyright 2021 Nicholas Russo http://njrusmc.net 208

http://njrusmc.net


if bgp["type"] == "rr":

self.logger.info(name)

for nbr, attr in bgp["neighbor"].items():

pfx = attr["state_pfxrcd"]

# "nbr" key is absent on first pass; add nbr/set pair

if not nbr in pfx_dict:

pfx_dict[nbr] = set()

pfx_dict[nbr].add(pfx)

self.logger.info("%s: %s", nbr, pfx)

# Each dict value should be a set with 1 value each

for pfx_set in pfx_dict.values():

assert len(pfx_set) == 1

The final test will ensure the BGP input and output queues are empty for each neighbor. When BGP
is converging, these queues might fill up for short periods of time, but in a stable network, zero is the
desired value. The self.data attribute is a standard Python dict that has been used in all of the testing
thus far. The self.orig attribute is a QDict that inherits from dict, providing a superset of functionality.
Engineers can use the interactive pyats shell command and pass in a testbed to quickly confirm this. The
command starts up a Python interactive REPL and automatically loads the testbed specified, speeding up
development and troubleshooting.

(pyats) [root@devbox ls_pyats]# pyats shell --testbed testbed.yml

Welcome to pyATS Interactive Shell

==================================

Python 3.7.3 (default, Sep 6 2019, 00:06:48)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)]

>>> from pyats.topology.loader import load

>>> testbed = load('testbed.yml')

-------------------------------------------------------------------------------

>>> r1 = testbed.devices["R1"]

>>> r1.connect(log_stdout=False)

>>> data = r1.parse("show bgp ipv4 unicast summary")

>>> type(data)

<class 'genie.conf.base.utils.QDict'>

>>> isinstance(data, dict)

True

>>> (Control+D)

now exiting InteractiveConsole...

One powerful feature is the Dq() function, made accessible by the q attribute within the QDict object. This
enables faster dictionary traversal and provides mechanisms to match keys, values, or both. It also provides
regular expression and comparative operator support for advanced filtering. The BGP message queue test
demonstrates some features of Dq() below. The input queue test uses the get_values() method, which
returns a list of values within the hierarchy for the given key. This test is type-agnostic; it is equally relevant
for route-reflectors and their clients (leaves). That list of values, which should be a list of only zeroes, is
converted to a set. After removing duplicates, the set should have a length of one, and the only value in the
set should be zero.

The exact same logic could be used for the output queue test, but it’s more interesting to exercise a different
technique. The value_operator() method takes in a key name, operator, and operand. This specific
example collects any output queue values greater than zero, and we expect this to return an empty list. Any
non-empty result indicates a failure.

@aetest.test

def check_empty_queues(self):

"""Ensure each router has no queued messages using Dq() feature"""

Copyright 2021 Nicholas Russo http://njrusmc.net 209

http://njrusmc.net


# Loop over original "parsed" data (unmodified Genie output)

for name, orig in self.orig.items():

self.logger.info(name)

# Query the for all input_queue values and convert to set

inq_set = set(orig.q.get_values("input_queue"))

# Set must have one element which is equal to 0 (no updates in InQ)

assert len(inq_set) == 1

assert inq_set.pop() == 0

# Query for all output_queue values greater than 0

outq_dq = orig.q.value_operator("output_queue", ">", 0)

# Nothing should be returned; a positive int means updates in OutQ

assert len(outq_dq) == 0

The last step is to tie everything together. While it is possible to cram all of this code into a single Python
module, it’s cleaner and more manageable to use multiple files as displayed earlier. The final script has three
main characteristics. First, it imports all of the modules from the test_project/ package, making them
accessible to aetest. Second, these modules and the classes within them are not automatically consumed
by aetest. They must be manually subclassed into dummy wrappers per the pyATS documentation. This
allows operators to choose which test cases to run and in which order. Be sure to include setup/cleanup
activities as well. Third, aetest must be invoked. This script uses the well-known argparse module to add
CLI options to the script, allowing a testbed to be passed in by the user. This string filepath then feeds into
a topology loader, effectively parsing the YAML file into a topology object which contains the device objects
consumed by the setup, test, and cleanup activities described earlier. Invoking the aetest.main() function
starts the test process, which returns a result. Passing this result object into the exit_cli_code() function
allows the script to return code 0 upon success and a non-zero code otherwise.

(pyats) [root@devbox ls_pyats]# cat validate.py

#!/usr/bin/env python

"""

Author: Nick Russo (njrusmc@gmail.com)

Purpose: Demonstrate pyATS in a leaf/spine network using aetest

to validate OSPF and BGP topological information.

"""

from argparse import ArgumentParser

from pyats import aetest, topology

from test_project import common, ospf_test, bgp_test

# Setup, test cases, and cleanup must be explicitly subclassed

# so that aetest can process them; importing alone does nothing

class LocalLeafSpineCommonSetup(common.LeafSpineCommonSetup):

pass

class LocalOSPFTestcase(ospf_test.OSPFTestcase):

pass

class LocalBGPTestcase(bgp_test.BGPTestcase):

pass

class LocalLeafSpineCommonCleanup(common.LeafSpineCommonCleanup):

pass

Copyright 2021 Nicholas Russo http://njrusmc.net 210

http://njrusmc.net


if __name__ == "__main__":

# Process arguments from CLI

parser = ArgumentParser()

parser.add_argument("-t", "--testbed", type=str, help="testbed YAML path")

args = parser.parse_args()

# Load topology from testbed file and execute test plan

result = aetest.main(testbed=topology.loader.load(args.testbed))

aetest.exit_cli_code(result)

With all the code written, let’s run the validate.py script, passing in the testbed.yml file using the proper
CLI option. The pyATS output is too wide for this book’s margins. Some of the insignificant text, such
as the logging timestamps on the left and the length of the encircling boxes on the right have been trun-
cated for neatness. The output is self-explanatory and note that operator-defined log messages use the
TEST_PROJECT facility. This traceability simplifies troubleshooting should an error occur. The script returns
code 0 to indicate success; more on return code processing later.

(pyats) [root@devbox ls_pyats]# python validate.py -t testbed.yml

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting common setup |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting subsection connect |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: The result of subsection connect is => PASSED

%AETEST-INFO: The result of common setup is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting testcase LocalOSPFTestcase |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section setup |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: R4

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section setup is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_unique_rid |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: R4

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section check_unique_rid is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_areas |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: R4

%TEST_PROJECT-INFO: R5

Copyright 2021 Nicholas Russo http://njrusmc.net 211

http://njrusmc.net


%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section check_areas is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_interfaces |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R4

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R6

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%AETEST-INFO: The result of section check_interfaces is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_neighbors_state |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R4

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%TEST_PROJECT-INFO: R6

%TEST_PROJECT-INFO: Ethernet0/2

%TEST_PROJECT-INFO: Ethernet0/3

%AETEST-INFO: The result of section check_neighbors_state is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_neighbors_count_nonspines |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1: 2

%TEST_PROJECT-INFO: R2: 2

Copyright 2021 Nicholas Russo http://njrusmc.net 212

http://njrusmc.net


%TEST_PROJECT-INFO: R5: 2

%TEST_PROJECT-INFO: R6: 2

%AETEST-INFO: The result of section check_neighbors_count_nonspines is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_neighbors_count_spines |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R3: 4

%TEST_PROJECT-INFO: R4: 4

%AETEST-INFO: The result of section check_neighbors_count_spines is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section cleanup |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: The result of section cleanup is => PASSED

%AETEST-INFO: The result of testcase LocalOSPFTestcase is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting testcase LocalBGPTestcase |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section setup |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section setup is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_same_asn |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section check_same_asn is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_prefix_count_leaf |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: 10.0.0.1: 6

%TEST_PROJECT-INFO: 10.0.0.2: 6

%TEST_PROJECT-INFO: R6

%TEST_PROJECT-INFO: 10.0.0.1: 5

%TEST_PROJECT-INFO: 10.0.0.2: 5

%AETEST-INFO: The result of section check_prefix_count_leaf is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_prefix_count_rr |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: 10.0.0.5: 5

%TEST_PROJECT-INFO: 10.0.0.6: 6

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: 10.0.0.5: 5

%TEST_PROJECT-INFO: 10.0.0.6: 6

%AETEST-INFO: The result of section check_prefix_count_rr is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_empty_queues |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: R5

Copyright 2021 Nicholas Russo http://njrusmc.net 213

http://njrusmc.net


%TEST_PROJECT-INFO: R6

%AETEST-INFO: The result of section check_empty_queues is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section cleanup |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: The result of section cleanup is => PASSED

%AETEST-INFO: The result of testcase LocalBGPTestcase is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting common cleanup |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting subsection disconnect |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: The result of subsection disconnect is => PASSED

%AETEST-INFO: The result of common cleanup is => PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Detailed Results |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: SECTIONS/TESTCASES RESULT

%AETEST-INFO: ------------------------------------------------------------------

%AETEST-INFO: .

%AETEST-INFO: |-- common_setup PASSED

%AETEST-INFO: | `-- connect PASSED

%AETEST-INFO: |-- LocalOSPFTestcase PASSED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_unique_rid PASSED

%AETEST-INFO: | |-- check_areas PASSED

%AETEST-INFO: | |-- check_interfaces PASSED

%AETEST-INFO: | |-- check_neighbors_state PASSED

%AETEST-INFO: | |-- check_neighbors_count_nonspines PASSED

%AETEST-INFO: | |-- check_neighbors_count_spines PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: |-- LocalBGPTestcase PASSED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_same_asn PASSED

%AETEST-INFO: | |-- check_prefix_count_leaf PASSED

%AETEST-INFO: | |-- check_prefix_count_rr PASSED

%AETEST-INFO: | |-- check_empty_queues PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: `-- common_cleanup PASSED

%AETEST-INFO: `-- disconnect PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Summary |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: Number of ABORTED 0

%AETEST-INFO: Number of BLOCKED 0

%AETEST-INFO: Number of ERRORED 0

%AETEST-INFO: Number of FAILED 0

%AETEST-INFO: Number of PASSED 4

%AETEST-INFO: Number of PASSX 0

%AETEST-INFO: Number of SKIPPED 0

%AETEST-INFO: Total Number 4

%AETEST-INFO: Success Rate 100.0%

%AETEST-INFO: ------------------------------------------------------------------

(pyats) [root@devbox ls_pyats]# echo $?

0

Recall that tests within a test case are independent. Defining a larger number of small tests is an ideal
approach to identify specific network problems. To illustrate this, we’ll intentionally break OSPF. On R3,

Copyright 2021 Nicholas Russo http://njrusmc.net 214

http://njrusmc.net


let’s change the R5 peer interface to the broadcast network type. The OSPF neighbor between these routers
will remain up and in a full state, so the neighbor-related test should pass. However, the interface-related
test should fail.

R3#show ip ospf neighbor | include ^Neighbor|10.0.0.5

Neighbor ID Pri State Dead Time Address Interface

10.0.0.5 0 FULL/ - 00:00:38 10.3.5.5 Ethernet0/2

R3#show ip ospf interface Ethernet0/2 | include Type

Process ID 1, Router ID 10.0.0.3, Network Type POINT_TO_POINT, Cost: 10

R3#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R3(config)#interface Ethernet0/2

R3(config-if)#ip ospf network broadcast

R3(config-if)#end

R3#show ip ospf interface Ethernet0/2 | include Type

Process ID 1, Router ID 10.0.0.3, Network Type BROADCAST, Cost: 10

R3#show ip ospf neighbor | include ^Neighbor|10.0.0.5

Neighbor ID Pri State Dead Time Address Interface

10.0.0.5 1 FULL/DR 00:00:39 10.3.5.5 Ethernet0/2

Simply rerun the validate.py script to perform the post-change checks on the network. The output below
is heavily shortened for brevity, focusing only on the key parts. Notice the return code is non-zero; this
would allow any CI/CD systems to properly report a failure to indicate a malfunctioning network.

(pyats) [root@devbox ls_pyats]# python validate.py -t testbed.yml

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting common setup |

%AETEST-INFO: +----------------------------------------------------------------+

(snip, setup continues without error)

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_interfaces |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R1

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R2

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: R3

%TEST_PROJECT-INFO: Ethernet0/0

%TEST_PROJECT-INFO: Ethernet0/1

%TEST_PROJECT-INFO: Ethernet0/2

%AETEST-WARNING: Caught an assertion failure in section check_interfaces:

%AETEST-WARNING: Traceback (most recent call last):

%AETEST-WARNING: File (snip)/ospf_test.py, line 76, in check_interfaces

%AETEST-WARNING: assert attrs["interface_type"] == "point-to-point"

%AETEST-WARNING: AssertionError

%AETEST-INFO: The result of section check_interfaces is => FAILED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_neighbors_state |

%AETEST-INFO: +----------------------------------------------------------------+

(snip, tests and cleanup continue without error)

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Detailed Results |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: SECTIONS/TESTCASES RESULT

Copyright 2021 Nicholas Russo http://njrusmc.net 215

http://njrusmc.net


%AETEST-INFO: ------------------------------------------------------------------

%AETEST-INFO: .

%AETEST-INFO: |-- common_setup PASSED

%AETEST-INFO: | `-- connect PASSED

%AETEST-INFO: |-- LocalOSPFTestcase FAILED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_unique_rid PASSED

%AETEST-INFO: | |-- check_areas PASSED

%AETEST-INFO: | |-- check_interfaces FAILED

%AETEST-INFO: | |-- check_neighbors_state PASSED

%AETEST-INFO: | |-- check_neighbors_count_nonspines PASSED

%AETEST-INFO: | |-- check_neighbors_count_spines PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: |-- LocalBGPTestcase PASSED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_same_asn PASSED

%AETEST-INFO: | |-- check_prefix_count_leaf PASSED

%AETEST-INFO: | |-- check_prefix_count_rr PASSED

%AETEST-INFO: | |-- check_empty_queues PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: `-- common_cleanup PASSED

%AETEST-INFO: `-- disconnect PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Summary |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: Number of ABORTED 0

%AETEST-INFO: Number of BLOCKED 0

%AETEST-INFO: Number of ERRORED 0

%AETEST-INFO: Number of FAILED 1

%AETEST-INFO: Number of PASSED 3

%AETEST-INFO: Number of PASSX 0

%AETEST-INFO: Number of SKIPPED 0

%AETEST-INFO: Total Number 4

%AETEST-INFO: Success Rate 75.0%

%AETEST-INFO: ------------------------------------------------------------------

(pyats) [root@devbox ls_pyats]# echo $?

1

Leaving OSPF broken, let’s intentionally break BGP next. R1’s BGP configuration is shown below, and both
leaves are removed as route-reflect clients. R1 is now unable to advertise iBGP-learned routes between
these two leaves. Note that R1’s BGP summary table does not indicate any obvious problems because R1
is still receiving the correct number of routes from each leaf.

R1#show running-config | section router bgp

router bgp 65000

template peer-session IBGP

remote-as 65000

update-source Loopback0

exit-peer-session

!

bgp router-id 10.0.0.1

bgp log-neighbor-changes

no bgp default ipv4-unicast

neighbor 10.0.0.5 inherit peer-session IBGP

neighbor 10.0.0.6 inherit peer-session IBGP

!

address-family ipv4

neighbor 10.0.0.5 activate

neighbor 10.0.0.5 route-reflector-client

Copyright 2021 Nicholas Russo http://njrusmc.net 216

http://njrusmc.net


neighbor 10.0.0.6 activate

neighbor 10.0.0.6 route-reflector-client

exit-address-family

R1#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R1(config)#router bgp 65000

R1(config-router)#address-family ipv4

R1(config-router-af)#no neighbor 10.0.0.5 route-reflector-client

R1(config-router-af)#no neighbor 10.0.0.6 route-reflector-client

R1(config-router-af)#end

R1#show bgp ipv4 unicast summary | begin ^Neighbor

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.0.0.5 4 65000 68 71 24 0 0 00:58:34 5

10.0.0.6 4 65000 7 5 24 0 0 00:00:12 6

Although the misconfiguration exists on R1, the failure should be detected on R5 and R6 (technically only R5
in our design because it comes first) when the script asserts that a route-reflector client (leaf) receives the
exact same number of routes from each router-reflector. It takes real networking experience and expertise
to interpret test results, so be sure that you understand your network architecture before hypothesizing
about faults.

R5#show bgp ipv4 unicast summary | begin ^Neighbor

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.0.0.1 4 65000 7 7 114 0 0 00:01:36 0

10.0.0.2 4 65000 88 85 114 0 0 01:13:51 6

R6#show bgp ipv4 unicast summary | begin ^Neighbor

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.0.0.1 4 65000 2 6 17 0 0 00:00:05 0

10.0.0.2 4 65000 8 7 17 0 0 00:01:44 5

Rerunning the script, we see two failures. The preexisting and independent OSPF interface misconfiguration
still exists and continues to be reported correctly. The new BGP misconfiguration is also detected on R5
as previously explained. It is possible to design a more complex and dynamic looping mechanism whereby
one router failing does not prevent the script from checking the remaining routers, which could be useful in
this case. This is an advanced topic not covered here.

(pyats) [root@devbox ls_pyats]# python validate.py -t testbed.yml

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting common setup |

%AETEST-INFO: +----------------------------------------------------------------+

(snip, setup continues without error)

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_prefix_count_leaf |

%AETEST-INFO: +----------------------------------------------------------------+

%TEST_PROJECT-INFO: R5

%TEST_PROJECT-INFO: 10.0.0.1: 0

%TEST_PROJECT-INFO: 10.0.0.2: 6

%AETEST-WARNING: Caught an assertion failure in section check_prefix_count_leaf:

%AETEST-WARNING: Traceback (most recent call last):

%AETEST-WARNING: File (snip)/bgp_test.py, line 80, in check_prefix_count_leaf

%AETEST-WARNING: assert len(pfx_set) == 1

%AETEST-WARNING: AssertionError

%AETEST-INFO: The result of section check_prefix_count_leaf is => FAILED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Starting section check_prefix_count_rr |

%AETEST-INFO: +----------------------------------------------------------------+

(snip, tests continue without error)

Copyright 2021 Nicholas Russo http://njrusmc.net 217

http://njrusmc.net


%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Detailed Results |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: SECTIONS/TESTCASES RESULT

%AETEST-INFO: ------------------------------------------------------------------

%AETEST-INFO: .

%AETEST-INFO: |-- common_setup PASSED

%AETEST-INFO: | `-- connect PASSED

%AETEST-INFO: |-- LocalOSPFTestcase FAILED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_unique_rid PASSED

%AETEST-INFO: | |-- check_areas PASSED

%AETEST-INFO: | |-- check_interfaces FAILED

%AETEST-INFO: | |-- check_neighbors_state PASSED

%AETEST-INFO: | |-- check_neighbors_count_nonspines PASSED

%AETEST-INFO: | |-- check_neighbors_count_spines PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: |-- LocalBGPTestcase FAILED

%AETEST-INFO: | |-- setup PASSED

%AETEST-INFO: | |-- check_same_asn PASSED

%AETEST-INFO: | |-- check_prefix_count_leaf FAILED

%AETEST-INFO: | |-- check_prefix_count_rr PASSED

%AETEST-INFO: | |-- check_empty_queues PASSED

%AETEST-INFO: | `-- cleanup PASSED

%AETEST-INFO: `-- common_cleanup PASSED

%AETEST-INFO: `-- disconnect PASSED

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: | Summary |

%AETEST-INFO: +----------------------------------------------------------------+

%AETEST-INFO: Number of ABORTED 0

%AETEST-INFO: Number of BLOCKED 0

%AETEST-INFO: Number of ERRORED 0

%AETEST-INFO: Number of FAILED 2

%AETEST-INFO: Number of PASSED 2

%AETEST-INFO: Number of PASSX 0

%AETEST-INFO: Number of SKIPPED 0

%AETEST-INFO: Total Number 4

%AETEST-INFO: Success Rate 50.0%

%AETEST-INFO: ------------------------------------------------------------------

(pyats) [root@devbox ls_pyats]# echo $?

1

In summary, pyATS (aetest specifically) and Genie powerfully combine to offer a flexible and comprehensive
test framework for network configuration, validation, and troubleshooting. The framework is heavier and
more complex than Ansible and Nornir but brings more intrinsic capability.

2.5 References and Resources

1. CLN Recorded SDN Seminars

2. Cisco Devnet Homepage

3. Cisco IOS-XE REST PI

4. Cisco IOS-XE RESTCONF

5. Cisco IOS-XR gRPC by Nicolas Leiva

6. Jinja2 Template Language

7. RFC6020 - YANG

Copyright 2021 Nicholas Russo http://njrusmc.net 218

https://learningnetwork.cisco.com/community/learning_center/sdn_recorded_seminars
https://developer.cisco.com/site/devnet/home/index.gsp
http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/restapi/restapi/RESTAPIintro.html
http://www.cisco.com/c/dam/global/cs_cz/assets/ciscoconnect/2014/assets/tech_sdn10_sp_netconf_yang_restconf_martinkramolis.pdf
https://nleiva.github.io/xrgrpc/
http://jinja.pocoo.org/docs/2.9/
https://tools.ietf.org/html/rfc6020
http://njrusmc.net


8. RFC6241 - NETCONF

9. RFC6242 - NETCONF over SSH

10. Learn YAML in Y Minutes

11. Learn JSON in Y Minutes

12. Learn XML in Y Minutes

13. Ansible ios-config module

14. Ansible ios-command module

15. Subversion SVN Server on CentOS7 Setup

Copyright 2021 Nicholas Russo http://njrusmc.net 219

https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6242
https://learnxinyminutes.com/docs/yaml/
https://learnxinyminutes.com/docs/json/
https://learnxinyminutes.com/docs/xml/
https://docs.ansible.com/ansible/ios_config_module.html
https://docs.ansible.com/ansible/ios_command_module.html
https://www.vultr.com/docs/how-to-setup-an-apache-subversion-svn-server-on-centos-7
http://njrusmc.net


3 Internet of Things

3.1 IoT Technology Stack

IoT, sometimes called Internet of Everything (IoE), is a concept that many non-person entities (NPEs) or
formerly non-networked devices in the world would suddenly be networked. This typically includes things
like window blinds, light bulbs, water treatment plant sensors, home heating/cooling units, street lights, and
anything else that could be remotely controlled or monitored. The business drivers for IoT are substantial:
electrical devices (like lights and heaters) could consume less energy by being smartly adjusted based on
changing conditions, window blinds can open and close based on the luminosity of a room, and chemical
levels can be adjusted in a water treatment plant by networked sensors. These are all real-life applications
of IoT and network automation in general.

The term Low-power and Lossy Networks (LLN) is commonly used in the IoT space since it describes the
vast majority of IoT networks. LLNs have the following basic characteristics (incomplete list):

1. Bandwidth constraints

2. Highly unreliable

3. Limited resources (power, CPU, and memory)

4. Extremely high scale (hundreds of millions and possibly more)

Recently, the term Operational Technology (OT) has been introduced within the context of IoT. OT is de-
scribed by Gartner as hardware and software that detects or causes a change through the direct monitoring
and/or control of physical devices, processes and events in the enterprise. OT encompasses the technolo-
gies that organizations use to operate their businesses.

For example, a manufacturer has expensive machines, many of which use custom protocols and software
to operate. These machines have historically not been tied into the Information Technology (IT) networking
equipment that network engineers typically manage. The concept of IT/OT convergence is made possible
by new developments in IoT. One benefit, as it pertains to the manufacturing example, helps enhance “just
in time” production. Market data from IT systems tied into the Material Requirement Planning (MRP) system
causes production to occur only based on actual sales/demand, not a long-term forecast. The result is a
reduction in inventories (raw material, work in process, and finished goods), lead time, and overall costs for
a plant.

IoT combines a number of emerging technologies into its generalized network architecture. The architecture
consists primarily of four layers:

1. Data center (DC) Cloud: Although not a strict requirement, the understanding that a public cloud
infrastructure exists to support IoT is a common one. A light bulb manufacturer could partner with
a networking vendor to develop network-addressable light bulbs which are managed from a custom
application running in the public cloud. This might be better than a private cloud solution since, if the
application is distributed, regionalized instances could be deployed in geographically dispersed areas
using an “anycast” design for scalability and performance improvements. As such, public cloud is
generally assumed to be the DC presence for IoT networks.

2. Core Networking and Services: This could be a number of transports to connect the public cloud
to the sensors. The same is true for any connection to public cloud, in reality, since even businesses
need to consider the manner in which they connect to public cloud. The primary three options (private
WAN, IXP, or Internet VPN) were discussed in the Cloud section. The same options apply here. A
common set of technologies/services seen within this layer include IP, MPLS, mobile packet core,
QoS, multicast, security, network services, hosted cloud applications, big data, and centralized device
management (such as a network operations facility).

3. Multi-service Edge (access network): Like most SP networks, the access technologies tend to
vary greatly based on geography, cost, and other factors. Access networks can be optically-based
to provide Ethernet handoffs to IoT devices; this would make sense for relatively large devices that

Copyright 2021 Nicholas Russo http://njrusmc.net 220

http://njrusmc.net


would have Ethernet ports and would be generally immobile. Mobile devices, or those that are small
or remote, might use cellular technologies such as 2G, 3G, or 4G/LTE for wireless backhaul to the
closest POP. A combination of the two could be used by extending Ethernet to a site and using
802.11 Wi-Fi to connect the sensors to the WLAN. The edge network may require use of “gateways”
as a short-term solution for bridging (potentially non-IP) IoT networks into traditional IP networks. The
gateways come with an associated high CAPEX and OPEX since they are custom devices to solve a
very specific use-case. Specifically, gateways are designed to perform some subset of the following
functions, according to Cisco:

(a) Map semantics between two heterogeneous domains: The word semantics in this context
refers to the way in which two separate networks operate and how each network interprets
things. If the embedded systems network is a transparent radio mesh using a non-standard
set of protocols while the multi-service edge uses IP over cellular, the gateway is responsible
for “presenting” common interfaces to both networks. This allows devices in both networks to
communicate using a “language” that is common to each.

(b) Perform translation in terms of routing, QoS security, management, etc: These items are
some concrete examples of semantics. An appropriate analogy for IP networkers is stateless
NAT64; an inside-local IPv4 host must send traffic to some outside-local IPv4 address which
represents an outside-global IPv6 address. The source of that packet becomes an IPv6 inside-
global address so that the IPv6 destination can properly reply.

(c) Do more than just protocol changes: The gateways serve as interworking devices between
architectures at an architectural level. The gateways might have a mechanism for presenting
network status/health between layers, and more importantly, be able to fulfill their architectural
role in ensuring end-to-end connectivity across disparate network types.

4. Embedded Systems (Smart Things Network): This layer represents the host devices themselves.
They can be wired or wireless, smart or less smart, or any other classification that is useful to catego-
rize an IoT component. Often times, such devices support zero-touch provisioning (ZTP) which helps
with the initial deployment of massive-scale IoT deployments. For static components, these compo-
nents are literally embedded in the infrastructure and should be introduced during the construction
of a building, factory, hospital, etc. These networks are rather stochastic (meaning that behavior can
be unpredictable). The author classifies wireless devices into three general categories which help
explain what kind of RF-level transmission methods are most sensible:

(a) Long range: Some devices may be placed very far from their RF base stations/access points
and could potentially be highly mobile. Smart automobiles are a good example of this; such
devices are often equipped with cellular radios, such as 4G/LTE. Such an option is not optimal
for supporting LLNs given the cost of radios and power required to run them. To operate a
private cellular network, the RF bands must be licensed (in the USA, at least), which creates an
expensive and difficult barrier for entry.

(b) Short range with “better” performance: Devices that are within a local area, such as a build-
ing, floor of a large building, or courtyard area, could potentially use unlicensed frequency bands
while transmitting at low power. These devices could be CCTV sensors, user devices (phones,
tablets, laptops, etc), and other general-purpose things whereby maximum battery life and cost
savings are eclipsed by the need for superior performance. IEEE 802.11 Wi-Fi is commonly used
in such environments. IEEE 802.16 WiMAX could also be used but, in the author’s experience,
it is rare.

(c) Short range with “worse” performance: Many IoT devices fall into this final category whereby
the device itself has a very small set of tasks it must perform, such as sending a small burst
of data when an event occurs (i.e., some nondescript sensor). Devices are expected to be
installed one time, rarely maintained, procured/operated at low cost, and be value-engineered
to perform a limited number of functions. These devices are less commonly deployed in home
environments since many homes have Wi-Fi; they are more commonly seen spread across cities.

Copyright 2021 Nicholas Russo http://njrusmc.net 221

http://njrusmc.net


Examples might include street lights, sprinklers, and parking/ticketing meters. IEEE has defined
802.15.4 to support low-rate wireless personal area networks (LR-PANS) which is used for many
such IoT devices. Note that 802.15.4 is the foundation for upper-layer protocols such as ZigBee
and WirelessHART. ZigBee, for example, is becoming popular in homes to network some IoT
devices, such as thermostats, which may not support Wi-Fi in their hardware.

IEEE 802.15.4 is worth a brief discussion by itself. Unlike Wi-Fi, all nodes are “full-function” and can act as
both hosts and routers; this is typical for mesh technologies. A device called a PAN coordinator is analogous
to a Wi-Fi access point (WAP) which connects the PAN to the wired infrastructure; this technically qualifies
the PAN coordinator as a “gateway” discussed earlier.

3.1.1 IoT Network Hierarchy

The basic IoT architecture is depicted in the diagram that follows.

Figure 71: IoT Network Architecture High Level

As a general comment, one IoT strategy is to “mesh under” and “route over”. This loosely follows the 7-
layer OSI model by attempting to constrain layers 1 and 2 to the IoT network, to include RF networking and
link-layer communications, then using some kind of IP overlay of sorts for network reachability. Additional
details about routing protocols for IoT are discussed later in this document.

The mobility of an IoT device is going to be largely determined by its access method. Devices that are on
802.11 Wi-Fi within a factory will likely have mobility through the entire factory, or possibly the entire com-
plex, but will not be able to travel large geographic distances. For some specific manufacturing work carts
(containing tools, diagnostic measurement machines, etc), this might be an appropriate method. Devices
connected via 4G LTE will have greater mobility but will likely represent something that isn’t supposed to be
constrained to the factory, such as a service truck or van. Heavy machinery bolted to the factory floor might
be wired since it is immobile.

Migrating to IoT need not be swift. For example, consider an organization which is currently running a virtual
private cloud infrastructure with some critical in-house applications in their private cloud. All remaining
commercial applications are in the public cloud. Assume this public cloud is hosted locally by an ISP
and is connected via an MPLS L3VPN extranet into the corporate VPN. If this corporation owns a large
manufacturing company and wants to begin deploying various IoT components, it can begin with the large
and immobile pieces.

Copyright 2021 Nicholas Russo http://njrusmc.net 222

http://njrusmc.net


The multi-service edge (access) network from the regional SP POP to the factory likely already supports
Ethernet as an access technology, so devices can use that for connectivity. Over time, a corporate WLAN
can be extended for 802.11 Wi-Fi capable devices. Assuming this organization is not deploying a private
4G/5G LTE network, sensors can immediately be added using cellular as well. Power line communication
(PLC) technologies for transmitting data over existing electrical infrastructure can also be used at this tier
in the architecture. The migration strategy towards IoT is very similar to adding new remote branch sites,
except the number of hosts could be very large. The LAN, be it wired or wireless, still must be designed
correctly to support all of the devices.

Environment impacts are especially important for IoT given the scale of devices deployed. Although wireless
technologies become more resilient over time, they remain susceptible to interference and other natural
phenomena which can degrade network connectivity. Some wireless technologies are even impacted by
rain, a common occurrence in many parts of the world. The significance of this with IoT is to consider when
to use wired or wireless communications for a sensor. Some sensors may even be able to support multiple
communication styles in an active/standby design. As is true in most networks, resilient design is important
in ensuring that IoT-capable devices are operable.

3.1.2 Data Acquisition and Flow

Understanding data flow through an IoT network requires tracing all of the communication steps from the
sensors in the field up to the business applications in the private data center or cloud. This is best explained
with an example to help solidify the high-level IoT architecture discussed in the previous section.

Years ago, the author worked in a factory as a product quality assurance (QA) technician for a large ra-
dio manufacturer. The example is based on a true story with some events altered to better illustrate the
relevance to IoT data flow.

Stationed immediately after final assembly, newly-built products were tested within customized test fixtures
to ensure proper operation. The first series of tests, for example, measured transmit power output, receiver
sensitivity, and other core radio functions. The next series required radios to be secured to a large machine
which would apply shock and vibration treatment to the radios, ensuring they could tolerate the harsh treat-
ment. The final series consisted of environmental testing conducted in a temperature-controlled chamber.
The machine tested very hot temperatures, very cold temperatures, and ambient temperature. Products
had to pass all tests to be considered of satisfactory quality for customer shipment.

None of this equipment was Ethernet or IP enabled, yet still had to report test data back to a centralized sys-
tem. This served a short term purpose of tracking defects to redirect defective products to the rework area.
It also was useful in the long-term to identify trends relating to faulty product design or testing procedures.
All of this equipment is considered OT.

The test equipment described above is like an IoT sensor; it performs specific measurements and reports
the data back upstream. The first device in the path is an IoT gateway, discussed in the previous section,
which collects data from many sensors. The gateway is responsible for reducing the data sent further
upstream. As such, a gateway is an aggregation node for many sensors. For example, if 1 out of each 100
products fail QA, providing all relevant data about the failed test is useful, but perhaps only a summary report
about the other 99 is sufficient. In this example, the IoT gateway was located in the plant and connected
into the corporate IT network. The gateway was, in effect, an IT/OT interworking device. A Cisco IR 819 or
IR 829 router is an example of a gateway device. Additional intelligence (filtering, aggregation, processing,
etc.) could be added via fog/edge computing resources collocated with the IoT gateway.

The gateway passes data to a data broker, such as a Cisco Kinetic Edge and Fog Module (EFM) broker.
This device facilitates communication between the IoT network as a whole and the business applications.
Thus, the broker is another level of aggregation above the gateway as many gateways communicate to
it. The broker serves as an entry point (i.e., an API) for developers using Kinetic EFM to tie into their
IoT networks through the gateways. Please see the “fog computing” section for more information on this
solution, as it also includes database functionality suited for IoT.

Copyright 2021 Nicholas Russo http://njrusmc.net 223

http://njrusmc.net


The data collected by the sensors can now be consumed by manufacturing business applications, using the
story described earlier. At its most benign, the information presented to business leaders may just be used
for reporting, followed by human-effected downstream adjustments. For example, industrial engineers may
adjust the tolerance of a specific machine after noticing some anomalies with the data.

A more modern approach to IoT would be using the business application’s intelligence to issue these com-
mands automatically. Higher technology machines can often times adjust themselves, and sometimes
without human intervention. The test equipment on the plant floor could be adjusted without the factory
employees needing to halt production to perform these tasks. The modifications could be pushed from the
business application down through the broker and gateway to each individual device, but more commonly,
an actor (opposite of a sensor) is used for this purpose. The actor IoT devices do not monitor anything
about the environment, but serve to make adjustments to sensors based on business needs.

The diagram that follows depicts a flow diagram of the IoT components and data flow across the IoT ar-
chitecture. For consistency, the same IoT high level diagram is shown again but with additional details to
support the aforementioned example.

Figure 72: IoT Network Architecture With Example

3.2 IoT standards and protocols

Several new protocols have been introduced specifically for IoT, some of which are standardized:

1. RPL — IPv6 Routing Protocol for LLNs (RFC 6550): RPL is a distance-vector routing protocol
specifically designed to support IoT. At a high-level, RPL is a combination of control-plane and for-
warding logic of three other technologies: regular IP routing, multi-topology routing (MTR), and MPLS
traffic-engineering (MPLS TE). RPL is similar to regular IP routing in that directed acyclic graphs
(DAG) are created through the network. This is a fancy way of saying “loop-free shortest path” be-
tween two points. These DAGs can be “colored” into different topologies which represent different
network characteristics, such as high bandwidth or low latency. This forwarding paradigm is similar
to MTR in concept. Last, traffic can be assigned to a colored DAG based on administratively-defined
constraints, including node state, node energy, hop count, throughput, latency, reliability, and color
(administrative preference). This is similar to MPLS TE’s constrained shortest path first (CSPF) pro-
cess which is used for defining administrator-defined paths through a network based on a set of
constraints, which might have technical and/or business drivers behind them.

2. 6LoWPAN — IPv6 over Low Power WPANs (RFC 4944): This technology was specifically developed

Copyright 2021 Nicholas Russo http://njrusmc.net 224

http://njrusmc.net


to be an adaptation layer for IPv6 for IEEE 802.15.4 wireless networks. Specifically, it “adapts” IPv6
to work over LLNs which encompasses many functions:

(a) MTU correction: The minimum MTU for IPv6 across a link, as defined in RFC2460, is 1280
bytes. The maximum MTU for IEEE 802.15.4 networks is 127 bytes. Clearly, no value can
mathematically satisfy both conditions concurrently. 6LoWPAN performs fragmentation and re-
assembly by breaking the large IPv6 packets into IEEE 802.15.4 frames for transmission across
the wireless network.

(b) Header compression: Many compression techniques are stateful and CPU-hungry. This strat-
egy would not be appropriate for low-cost LLNs, so 6LoWPAN utilizes an algorithmic (stateless)
mechanism to reduce the size of the IPv6 header and, if present, the UDP header. RFC4944
defines some common assumptions:

i. The version is always IPv6.

ii. Both source and destination addresses are link-local.

iii. The low-order 64-bits of the link-local addresses can be derived from the layer-2 network
addressing in an IEEE 802.15.4 wireless network.

iv. The packet length can be derived from the layer-2 header.

v. Next header is always ICMP, TCP, or UDP.

vi. Flow label and traffic class are always zero.

vii. As an example, an IPv6 header (40 bytes) and a UDP header (8 bytes) are 48 bytes long
when concatenated. This can be compressed down to 7 bytes by 6LoWPAN.

(c) Mesh routing: Somewhat similar to Wi-Fi, mesh networking is possible, but requires up to 4
unique addresses. The original source/destination addresses can be retained in a new “mesh
header” while the per-hop source/destination addresses are written to the MAC header.

(d) MAC level retransmissions: IP was designed to be fully stateless and any retransmission or
flow control was the responsibility of upper-layer protocols, such as TCP. When using 6LoWPAN,
retransmissions can occur at layer-2.

3. CoAP — Constrained Application Protocol (RFC7252): At a high-level, CoAP is very similar to
HTTP in terms of the capabilities it provides. It is used to support the transfer of application data
using common methods such as GET, POST, PUT, and DELETE. CoAP runs over UDP port 5683
by default (5684 for secure CoAP) and was specifically designed to be lighter weight and faster than
HTTP. Like the other IoT protocols, CoAP is designed for LLNs, and more specifically, to support
machine-to-machine communications. Despite CoAP being designed for maximum efficiency, it is not
a general replacement for HTTP. It only supports a subset of HTTP capabilities and should only be
used within IoT environments. To interwork with HTTP, one can deploy an HTTP/CoAP proxy as a
“gateway” device between the multi-service edge and smart device networks. CoAP has a number of
useful features and characteristics:

(a) Supports multicast: Because it is UDP-based, IP multicast is possible. This can be used both
for application discovery (in lieu of DNS) or efficient data transfer.

(b) Built-in security: CoAP supports using datagram TLS (DTLS) with both pre-shared key and
digital certificate support. As mentioned earlier, CoAP DTLS uses UDP port 5684.

(c) Small header: The CoAP overhead adds only 4 bytes.

(d) Fast response: When a client sends a CoAP GET to a server, the requested data is immediately
returned in an ACK message, which is the fastest possible data exchange.

4. Message Queuing Telemetry Transport (ISO/IEC 20922:2016): MQTT is, in a sense, the predeces-
sor of CoAP in that it was created in 1999 and was specifically designed for lightweight, web-based,

Copyright 2021 Nicholas Russo http://njrusmc.net 225

http://njrusmc.net


machine-to-machine communications. Like HTTP, it relies on TCP, except uses ports 1883 and 8883
for plain-text and TLS communications, respectively. Being based on TCP also implies a client/server
model, similar to HTTP, but not necessary like CoAP. Compared to CoAP, MQTT is losing traction
given the additional benefits specific to modern IoT networks that CoAP offers.

The table that follows briefly compares CoAP, MQTT, and HTTP.

CoAP MQTT HTTP

Transport and ports UDP 5683/5684 TCP 1883/1889 TCP 80/443

Security support DTLS via PSK/PKI TLS via PSK/PKI TLS via PSK/PKI

Multicast support Yes, but no encryption support yet No No

Lightweight Yes Yes No

Standardized Yes No; in progress Yes

Rich feature set No No Yes

Table 6: IoT Transport Protocol Comparison

Because IoT is so different than traditional networking, it is worth examining some of the layer-1 and layer-2
protocols relevant to IoT. One common set of physical layer enhancements that found traction in the IoT
space are power line communication (PLC) technologies. PLCs enable data communications transfer over
power lines and other electrical infrastructure devices. Two examples of PLC standards are discussed
below:

1. IEEE 1901.2–2013: This specification allows for up to 500 kbps of data transfer across alternating
current, direct current, and

non-energized electric power lines. Smart grid applications used to operate and maintain municipal
electrical delivery systems can rely on the existing power line infrastructure for limited data communi-
cations.

2. HomePlug GreenPHY: This technology is designed for home appliances such as refrigerators, stoves
(aka ranges), microwaves, and even plug-in electric vehicles (PEV). The technology allows devices to
be integrated with existing smart grid applications, similar to IEEE 1901.2–2013 discussed above. The
creator of this technology says that GreenPHY is a “manufacturer’s profile” of the IEEE specification,
and suggests that interworking is seamless.

Ethernet has become ubiquitous in most networks. Originally designed for LAN communications, it is
spreading into the WAN via “Carrier Ethernet” and into data center storage network via “Fiber Channel over
Ethernet”, to name a few examples. In IoT, new “Industrial Ethernet” standards are challenging older “field
bus” standards. The author describes some of the trade-offs between these two technology sets below.

1. Field bus: Seen as a legacy family of technologies by some, field bus networks are still widely de-
ployed in industrial environments. This is partially due to its incumbency and the fact that many end-
points on the network have interfaces that support various field bus protocols (MODBUS, CANBUS,
etc). Field bus networks are economical as transmitting power over them is easier than power over
Ethernet. Field bus technologies are less sensitive to electrical noise, have greater physical range
without repeaters (copper Ethernet is limited to about 100 meters), and provide determinism to help
keep machine communications synchronized.

2. Industrial Ethernet: To overcome the lack of deterministic and reliable transport of traditional Ether-
net within the industrial sector, a variety of Ethernet-like protocols have been created. Two examples
include EtherCAT and PROFINET. While speeds of industrial Ethernet are much slower than modern
Ethernet (10 Mbps to 1 Gbps), these technologies introduce deterministic data transfer. In summary,

Copyright 2021 Nicholas Russo http://njrusmc.net 226

http://njrusmc.net


these differences allow for accurate and timely delivery of traffic at slower speeds, compared to accu-
rate and fast delivery at indeterminate times. Last, the physical connectors are typically ruggedized to
further protect them in industrial environments.

Standardization must also consider Government regulation. Controlling access and identifying areas of
responsibility can be challenging with IoT. Cisco provides the following example: For example, Smart Traffic
Lights where there are several interested parties such as Emergency Services (User), Municipality (owner),
Manufacturer (Vendor). Who has provisioning access? Who accepts Liability?

There is more than meets the eye with respect to standards and compliance for street lights. Most municipal-
ities (such as counties or townships within the United States) have ordinances that dictate how street lighting
works. The light must be a certain color, must not “trespass” into adjacent streets, must not negatively affect
homeowners on that street, etc. This complicates the question above because the lines become blurred
between organizations rather quickly. In cases like this, the discussions must occur between all stakehold-
ers, generally chaired by a Government/company representative (depending on the consumer/customer),
to draw clear boundaries between responsibilities.

Radio frequency (RF) spectrum is a critical point as well. While Wi-Fi can operate in the 2.4 GHz and 5.0
GHz bands without a license, there are no unlicensed 4G LTE bands at the time of this writing. Deploying
4G LTE capable devices on an existing carrier’s network within a developed country may not be a problem.
Deploying 4G LTE in developing or undeveloped countries, especially if 4G LTE spectrum is tightly regulated
but poorly accessible, can be a challenge.

3.3 IoT security

Providing security and privacy for IoT devices is challenging mostly due to the sheer size of the access
network and supported clients (IoT devices). Similar best practices still apply as they would for normal
hosts except for needing to work in a massively scalable and distributed network. The best practices also
take into account the computational constraints of IoT devices to the greatest extent possible:

1. Use IEEE 802.1X for wired and wireless authentication for all devices. This is normally tied into a
Network Access Control (NAC) architecture which authorizes a set of permissions per device.

2. Encrypt wired and wireless traffic using MACsec/IPsec as appropriate.

3. Maintain physical accounting of all devices, especially small ones, to prevent theft and reverse engi-
neering.

4. Do not allow unauthorized access to sensors; ensure remote locations are secure also.

5. Provide malware protection for sensors so that the compromise of a single sensor is detected quickly
and suppressed.

6. Rely on cloud-based threat analysis (again, assumes cloud is used) rather than a distributed model
given the size of the IoT access network and device footprint. Sometimes this extension of the cloud
is called the “fog” and encompasses other things that produce and act on IoT data.

Another discussion point on the topic of security is determining how/where to “connect” an IoT network.
This is going to be determined based on the business needs, as always, but the general logic is similar to
what traditional corporate WANs use. Note that the terms “producer-oriented” and “consumer-oriented” are
creations of the author and exist primarily to help explain IoT concepts.

1. Fully private connections: Some IoT networks have no need to be accessible via the public Internet.
Such examples would include Government sensor networks which may be deployed in a battlefield
support capacity. More common examples might include Cisco’s “Smart Grid” architecture which is
used for electricity distribution and management within a city. Exposing such a critical resource to
a highly insecure network offers little value since the public works department can likely control it
from a dedicated NOC. System updates can be performed in-house and the existence of the IoT

Copyright 2021 Nicholas Russo http://njrusmc.net 227

http://njrusmc.net


network can be (and often times, should be) largely unknown by the general population. In general,
IoT networks that fall into this category are “producer-oriented” networks. While Internet-based VPNs
(discussed next) could be less expensive than private transports, not all IoT devices can support the
high computing requirements needed for IPsec. Additionally, some security organizations still see the
Internet as too dirty for general transport and would prefer private, isolated solutions.

2. Public Internet: Other IoT networks are designed to have their information shared or made public
between users. One example might be a managed thermostat service; users can log into a web portal
hosted by the service provider to check their home heating/cooling statistics, make changes, pay bills,
request refunds, submit service tickets, and the like. Other networks might be specifically targeted
to sharing information publicly, such as fitness watches that track how long an individual exercises.
The information could be posted publicly and linked to one’s social media page so others can see it.
A more practical and useful example could include public safety information via a web portal hosted
by the Government. In general, IoT networks that fall into this category are “consumer-oriented”
networks. Personal devices, such as fitness watches, are more commonly known within the general
population, and they typically use Wi-Fi for transport.

The topics in this section, thus far, have been on generic IoT security considerations and solutions. Cisco
identifies three core IoT security challenges and their associated high-level solutions. These challenges
are addressed by the Cisco IoT Threat Defense, which is designed to protect IoT environments, reducing
downtime and business disruption.

1. Antiquated equipment and technology: Cisco recommends using improved visibility to help secure
aging systems. Many legacy technologies use overly-simplistic network protocols and strategies to
communicate. The author personally worked with electronic test equipment which used IP broadcasts
to communicate. Because this test equipment needed to report to a central manager for calibration
and measurement reporting, all of these components were placed into a common VLAN, and this
VLAN was supposed to be dedicated only to this test equipment. Due to poor visibility (and conve-
nience), other devices unrelated to the test equipment were connected to this VLAN and therefore
forced to process the IP broadcasts. Being able to see this poor design and its inherent security risks
is the first step towards fixing it. To paraphrase Cisco: Do not start with the firewall, start with visibility.
You cannot begin segmentation until you know what is on your network.

2. Insecure design: Cisco recommends using access control to segment the network and isolate de-
vices, systems, or networks to contain any security breaches between unrelated activities. For exam-
ple, a small manufacturer may operate in a single plant where all the fabrication activities that feed
assembly are located near one another. For industrial engineers skilled in production engineering but
unskilled in network engineering, a “flat” network with all devices connected seems like an appropri-
ate business decision. Suppose that the cutting specifications on one of the milling machines was
malicious adjusted. Then, using the machine as a launch point, the attacker changed the tooling in
assembly accordingly so that the defective part still fit snugly into the final product. The manufacturer
is unaware of the problem until the customer receives the product, only to discover a defect. In sum-
mary, use “the principle of least privilege” in building communications streams between devices only
as necessary.

3. Lack of OT security skills: Cisco recommends advancing the IT/OT convergence effort to address
this issue. The previous two examples could be considered derivatives of this one. By intelligently and
securely combining IT and OT within an organization, many of the relatively modern technologies used
within IT can be leveraged within the OT environment. In addition to the business benefits discussed
earlier, IT/OT converge can increase security for the OT environment at low cost. It obviates the need
to deploy OT-specific security tools and solutions with a separate OT security team.

The following Cisco products form the basis of the Cisco IoT Threat Defense solution set:

1. Identity Services Engine (ISE): Profiles devices and creates IoT group policies

Copyright 2021 Nicholas Russo http://njrusmc.net 228

https://www.cisco.com/c/en/us/solutions/security/iot-threat-defense/index.html
http://njrusmc.net


2. Stealthwatch: Baselines traffic and detects unusual activity

3. Next-generation Firewall (NGFW): Identifies and blocks malicious traffic

4. Umbrella: Analyzes DNS and web traffic

5. Catalyst 9000 switches: Enforce segmentation and containment policies (via Trustsec)

6. AnyConnect: Protects remote devices from threats off-net. NGFW and ISE team up to protect against
remote threats and place remote users in the proper groups with proper permissions

3.4 IoT Edge and Fog Computing

A new term which is becoming more popular in the IoT space is “fog” computing. It is sometimes referred
to as “edge” computing outside of Cisco environments, which is a more self-explanatory term. Fog comput-
ing distributes storage, compute, and networking from a centralized cloud environment closer to the users
where a given service is being consumed. The drivers for edge computing typically revolve around perfor-
mance, notably latency reduction, as content is closer to users. The concept is somewhat similar to Content
Distribution Networking (CDN) in that users should not need to reach back to a small number of remote,
central sites to consume a service.

Cisco defines fog computing as an architecture that extends the Compute, Networking, and Storage ca-
pabilities from the Cloud to the Edge of IoT networks. The existence of fog computing is driven, in large
part, by the shift in dominant endpoints. Consumer products such as laptops, phones, and tablets are de-
signed primarily for human-to-human or human-to-machine interactions. Enterprise and OT products such
as sensors, smart objects, and clustered systems primarily use machine-to-machine communications be-
tween one another and/or their controllers, such as an MRP system. As such, many of these OT products
deployed far away from the cloud need to communicate directly, and in a timely, secure, and reliable fash-
ion. Having compute, network, and storage resources closer to these lines of communication helps achieve
these goals.

Fog computing is popular in IoT environments not just for performance reasons, but consumer convenience.
Wearing devices that are managed/tethered to other personally owned devices are a good example. Some
examples might be smart watches, smart calorie trackers, smart heart monitors, and other wearable devices
that “register” to a user’s cell phone or laptop rather than a large aggregation machine in the cloud.

With respect to cost reduction when deploying a new service, comparing “cloud” versus “fog” can be chal-
lenging and should be evaluated on a case-by-case basis. If the cost of backbone bandwidth from the edge
to the cloud is expensive, then fog computing might be affordable despite needing a capital investment
in distributed compute, storage, and networking. If transit bandwidth and cloud services are cheap while
distributed compute/storage resources are expensive, then fog computing is likely a poor choice. That is to
say, fog computing will typically be more expensive that cloud centralization.

Finally, it is worth noting the endless cycle between the push to centralize and decentralize. Many technical
authors (Russ White in particular) have noted this recurring phenomenon dating back many decades. From
the mainframe to the PC to the cloud to the fog, the pendulum continues to swing. The most realistic and
supportable solution is one that embraces both extremes, as well as moderate approaches, deploying the
proper solutions to meet the business needs. A combination of cloud and fog, as suggested by Cisco and
others in the IoT space, is likely to be the most advantageous solution.

3.4.1 Data Aggregation

Data aggregation in IoT is a sizable topic with a broad range of techniques across the layers of the OSI
model. Cisco states that data filtering, aggregation, and compression are performed at the edge, in the fog,
or at the center. Aggregation of data is a scaling technique that reduces the amount of traffic transmitted
over the network, often times to conserve bandwidth, power, and storage requirements. A simple example
includes logging. If hundreds of sensors are all in a healthy state, and report this in their regular updates,
a middle-tier collector could send a single message upstream to claim “All the sensors from my last update

Copyright 2021 Nicholas Russo http://njrusmc.net 229

http://njrusmc.net


are still valid. There is nothing new to report.”

Because IoT devices are often energy constrained, much of the data aggregation research has been placed
in the physical layer protocols and designs around them. The remainder of this section discusses many of
these physical layer protocols/methods and compares them. Many of these protocols seek to maximize the
network lifetime, which is the elapsed time until the first node fails due to power loss.

1. Direct transmission: In this design, there is no aggregation or clustering of nodes. All nodes send
their traffic directly back to the base station. This simple solution is appropriate if the coverage area is
small or it is electrically expensive to receive traffic, implying that a minimal hop count is beneficial.

2. Low-Energy Adaptive Clustering Hierarchy (LEACH): LEACH introduces the concept of a “cluster”,
which is a collection of nodes in close proximity for the purpose of aggregation. A cluster head (CH) is
selected probabilistically within each cluster and serves as an aggregation node. All other nodes in the
cluster send traffic to the CH, which communicates upstream to the base station. This relatively long-
haul transmission consumes more energy, so rotating the CH role is advantageous to the network as
a whole. Last, it supports some local processing/aggregation of data to reduce traffic sent upstream
(which consumes energy). Compared to direct transmission, LEACH prolongs network lifetime and
reduces energy consumption.

3. LEACH-Centralized (LEACH-C): This protocol modifies LEACH by centralizing the CH selection pro-
cess. All nodes report location and energy to the base station, which finds average of energy levels.
Those with above average remaining energy levels in each cluster are selected as CH. The base sta-
tion also notifies all other nodes of this decision. The CH may not change at regular intervals (rounds)
since the CH selection is more deliberate than with LEACH. LEACH distributes the CH role between
nodes in a probabilistic (randomized) fashion, whereby LEACH-C relies on the base station to make
this determination. The centralization comes at an energy cost since all nodes are transmitting their
current energy status back to the base station between rounds. The logic of the base station itself
also becomes more complex with LEACH-C compared to LEACH.

4. Threshold-sensitive Energy Efficiency Network (TEEN): This protocol differs from LEACH in that
it is reactive, not proactive. The radio stays off unless there is a significant change worth reporting.
This implies there are no periodic transmissions, which saves energy. Similar to the LEACH family,
each node becomes the CH for some time (cluster period) to distribute the energy burden of long-haul
communication to the base station. If the trigger thresholds are not crossed, nodes have no reason to
communicate. TEEN is excellent for intermittent, alert-based communications as opposed to routine
communications. This is well suited for event-driven, time sensitive applications.

5. Power Efficient Gathering in Sensor Info Systems (PEGASIS): Unlike the LEACH and TEEN fam-
ilies, PEGASIS is a chain based protocol. Nodes are connected in round-robin fashion (a ring); data
is sent only to a node’s neighbors, not to a CH within a cluster. These short transmission distances
his further minimize energy consumption. Rather than rotate the burdensome CH role, all nodes do a
little more work at all times. Only one node communicates with the base station. This allows nodes to
determine which other nodes are closest to them. Discovery is done by measuring the receive signal
strength indicator (RSSI) of incoming radio signals to find the closest nodes. PEGASIS is optimized
for dense networks.

6. Minimum Transmission of Energy (MTE): MTE is conceptually similar to PEGASIS in that it is a
chain based protocol designed to minimize the energy required to communicate between nodes. In
contrast with direct transmission, MTE assumes that the cost to receive traffic is low, and works well
over long distances with sparse networks. MTE is more computationally complex than PEGASIS,
again assuming that the energy cost of radio transmission is greater than the energy cost of local
processing. This may be true in some environments, such as long-haul power line systems and
interstate highway emergency phone booths.

7. Static clustering: Like the LEACH and TEEN families, static clustering requires creating geograph-
ically advantageous clusters for the purpose of transmission aggregation. This technique is static in

Copyright 2021 Nicholas Russo http://njrusmc.net 230

http://njrusmc.net


that the CH doesn’t rotate; it is statically configured by the network designer. This technique is use-
ful in heterogeneous environments where the CH is known to be a higher energy node. Consider a
simple, non-redundant example. Suppose that each building has 20 sensors, 1 of which is a more
expensive variant with greater energy capacity. The network is heterogeneous because not all 20
nodes are the same, and thus statically identifying the most powerful node as the permanent CH may
extend the network lifetime.

8. Distributed Energy Efficient Clustering (DEEC): Similar to static clustering, the DEEC family of
protocols is designed for heterogeneous networks containing a mix of node types. DEEC introduces
the concept of “normal” and “advanced;; nodes, with the latter having greater initial energy than the
former. Initial energy is assigned to normal nodes, with a little more initial energy assigned to ad-
vanced nodes. CH selection is done based on whichever node has the largest initial energy. As such,
advanced nodes are more likely to be selected as the CH.

9. Developed DEEC (DDEEC): A newer variant of DEEC, DDEEC addresses the concern that advanced
nodes become CH more often, and will deplete their energy more rapidly. At some point, they’ll look
like normal nodes, and should be treated as such as it relates to CH selection. Making a long-term CH
decision based on initial energy levels is can reduce the overall network lifetime. DDEEC improves the
CH selection process to consider initial and residual (remaining) energy in its calculation. Enhanced
DEEC (EDEEC) further extends DDEEC by adding a third class of nodes, called “super” nodes, which
have even greater initial energy than advanced nodes. Its operation is similar to DDEEC otherwise.

The chart that follows summarizes these protocols comparatively.

Method Tx Target Design Operation Used in Network life

Direct Tx BS Point-to-
point links to
BS

Send to BS
independently

Homogenous Poor

LEACH CH Proactive/
Cluster

Distributed
(random)

Homogenous Good in general

LEACH-C CH Proactive/
Cluster

Centralized
assignment

Homogenous Good in general

TEEN CH Reactive/
Cluster

Threshold-based
alerts

Homogenous Great with few
comms

PEGASIS Neighbor Greedy
chain

Find closest node Homogenous Great with dense
nodes

MTE Neighbor Optimal
chain

Find closest node Homogenous Great with sparse
nodes

Static
clustering

CH Cluster Manual CH
configuration

Heterogenous Variable, but
usually poor

DEEC CH Cluster Distributed using
initial energy only

Heterogenous Good

DDEEC/
EDEEC

CH Cluster Distributed using
initial/residual
energy

Heterogenous Great

Table 7: IoT Data Aggregation Protocol Comparison

Note that many of these protocols are still under extensive development, research, and testing.

Copyright 2021 Nicholas Russo http://njrusmc.net 231

http://njrusmc.net


3.4.2 Edge Intelligence

Cisco products relevant to the fog computing space include small Wi-Fi/LTE routers (Cisco IR 819/829
series) and programmable RF gateways (IR910). These devices bring all the power of Cisco IOS software
in a small form factor suitable for industrial applications. As with many IoT topics, demonstrating edge
intelligence is best accomplished with a real-life example. Edge intelligence often refers to distributed
analytics systems that can locally evaluate, reduce/aggregation, and act on sensor data to avoid expensive
backhaul to a centralized site. It can also generically refer to any intelligent decision making at the network
edge (where the sensors/users are), which is discussed in the example below.

The author personally used the IR 819 and IR 829 platforms in designing a large, distributed campus area
network in an austere environment. The IR 819s were LTE-only and could be placed on vehicles or remote
facilities within a few kilometers of the LTE base station. The IR 829s used LTE and Wi-Fi, with Wi-Fi being
the preferred path. This allowed the vehicles equipped with IR 829s to use Wi-Fi for superior performance
when they were very close to the base station (say, for refueling or resupply). Both the IR 819 and IR 829
equipped vehicles had plug-and-play Ethernet capability for when they were parked in the maintenance bay
for software updates and other bandwidth-intensive operations.

An IPsec overlay secured with next-generation encryption provided strong protection, and running Cisco
EIGRP ensured fast failover between the different transports. Using only IPv6, this network was fully dy-
namic and each remote IR 819 and IR 829 had the exact same configuration. The headend used IPv6 prefix
delegation through DHCP to assign prefixes to each node. The mobile routers, in turn, used these dele-
gated prefixes to seed their stateless address auto-configuration (SLAAC) processes for LAN clients. While
the solution did not introduce fog/edge compute or storage technology, it brought an intelligent, dynamic,
and scalable network to the most remote users. Future plans for the design included small, ruggedized
third-party servers with IoT analytics software locally hosted to reduce gateway backhaul bandwidth re-
quirements.

Cisco also has products to perform edge aggregation and analytics, such as Data in Motion (DMo). DMo is
a software technology that provides data management and first-order analysis at the edge. DMo converts
raw data to useful/actionable information for transmission upstream. The previous section discussed “Data
aggregation” in greater detail, and DMo offers that capability. DMo is a virtual machine which has RESTful
API support, encrypted transport options, and local caching capabilities.

Many IoT environments require a level of customization best suited for a business’ internal developers to
build. Cisco’s Kinetic Edge and Fog Module (EFM) is a development platform that customers can use
for operating and managing their IoT networks. Kinetic EFM is a distributed microservices platform for
acquiring telemetry, moving it, analyzing it while it’s moving and putting it to rest. The solution follows these
main steps as defined by Cisco:

1. Extract data from its sources and makes it usable.

2. Compute data to transform it, apply rules, and perform distributed micro-processing from edge to
endpoint.

3. Move data programmatically to the right applications at the right time.

Furthermore, the solution has three main components:

1. IoT message broker: Utilizes publish/subscribe exchanges with endpoints. It has a small footprint
and runs at the edge. It also supports various QoS levels to provide the correct treatment for applica-
tions.

2. Link: Synonymous with “microservice”. Many links already exist and are open source for Kinetic EFM
developers to utilize. For more information on microservices, please review the “containers” section
of this document.

Copyright 2021 Nicholas Russo http://njrusmc.net 232

http://njrusmc.net


3. Historian (formerly ParStream): SQL style database which can scale massively for IoT. It has excel-
lent performance and is well-suited to IoT architectures. The main drawback is that is only supports
the INSERT operation, not transactional operations like UPDATE or DELETE. To rapidly retrieve infor-
mation from the database, users have two options. One can send a query using the EFM as a query
mechanism directly. Alternatively, one can form an Open Database Connectivity (ODBC) connection
directly to the Historian database.

3.5 References and Resources

1. Cisco IoT Security

2. Cisco IoT General Information

3. Cisco IoT Assessment

4. Cisco IoT Homepage

5. BRKCRS-2444: The Internet of Things

6. BRKSPG-2611 - IP Routing in Smart Object Networks

7. BRKIOT-2020 - The Evolution from Machine-to-Machine (M2M) to the Internet of Everything

8. DEVNET-1108 - Cisco Executives Discuss the Internet of Things

9. LEACH, PEGASIS, and TEEN Comparison

10. The DEEC Family of Protocols

11. RFC6550 - RPL

12. RFC4944 - 6LoWPAN (see RFC4919 for informational draft)

13. RFC7252 - CoAP

14. MQTT Website

15. MQTT Specification

Copyright 2021 Nicholas Russo http://njrusmc.net 233

http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html
http://www.cisco.com/c/r/en/us/internet-of-everything-ioe/internet-of-things-iot/index.html
http://ioeassessment.cisco.com/
http://www.cisco.com/go/iot
https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=76308&backBtn=true
https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=3138&backBtn=true
https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=78943&backBtn=true
https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=84177&backBtn=true
https://ieeexplore.ieee.org/document/7414810/
https://www.researchgate.net/publication/322411068_Performance_Analysis_of_Heterogenous_WSN_for_application_in_IoT
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc7252
http://mqtt.org
https://www.iso.org/standard/69466.html
http://njrusmc.net


4 Blueprint v1.0 Legacy Topics

Topics in this section did not easily fit into the new blueprint. Rather than force them into the new blueprint
where they likely do not belong, the content for these topics is retained in this section.

4.1 Cloud

4.1.1 Troubleshooting and Management

One of the fundamental tenets of managing a cloud network is automation. Common scripting languages,
such as Python, can be used to automate a specific management task or set of tasks. Other network device
management tools, such as Ansible, allow an administrator to create a custom script and execute it on many
devices concurrently. This is one example of the method by which administrators can directly apply task
automation in the workplace.

Troubleshooting a cloud network is often reliant on real-time network analytics. Collecting network perfor-
mance statistics is not a new concept, but designing software to intelligently parse, correlate, and present
the information in a human-readable format is becoming increasingly important to many businesses. With
a good analytics engine, the NMS can move/provision flows around the network (assuming the network is
both disaggregated and programmable) to resolve any problems. For problems that cannot be resolved
automatically, the issues are brought to the administrator’s attention using these engines. The administrator
can use other troubleshooting tools or NMS features to isolate and repair the fault. Sometimes these ana-
lytics tools will export reports in YAML, JSON, or XML, which can be archived for reference. They can also
be fed into in-house scripts for additional, business-specific analysis. Put simply, analytics reduces “data”
into “actionable information”.

4.1.2 OpenStack components with PackStack Demonstration

Before discussing the OpenStack components, OpenStack’s background is discussed first. Although Open-
Stack seems similar to a hypervisor, it adds additional abstractions for virtual instances to reduce the man-
agement burden on administrators. OpenStack is part of the notion that technology is moving “from virtual
Machines (VM) to APIs”. VMs allow users to dynamically instantiate a server abstracted from physical re-
sources, which has been popular for years. The idea of cloud computing (and specifically OpenStack) is to
extend that abstraction to all resources (compute, storage, network, management, etc). All of these things
could be managed through APIs rather than vendor-specific prompts and user interfaces, such as GUIs,
CLIs, etc.

The fundamental idea is to change the way IT is consumed (including compute, storage, and network). The
value proposition of this change includes increasing efficiency (peak of sums, not sum of peaks) and on-
demand elastic provisioning (faster engineering processes). For cost reduction in both CAPEX and OPEX,
the cost models generally resemble “pay for what you use”. A customer can lease the space from a public
cloud provider for a variable amount of time. In some cases, entire IT shops might migrate to a public cloud
indefinitely. In others, a specific virtual workload may need to be executed one time for 15 minutes in the
public cloud since some computationally-expensive operations may take too long in the on-premises DC.
“Cloud bursting” is an example of utilizing a large amount of cloud resources for a very short period of time,
perhaps to reduce/compress a large chunk of data, which is a one-time event.

OpenStack releases are scheduled every 6 months and many vendors from across the stack contribute
to the code. The entire goal is to have an open-source cloud computing platform; while it may not be as
feature-rich as large-scale public cloud implementations, it is considered a viable and stable alternative.
OpenStack is composed of multiple projects which follow a basic process:

1. External: The idea phase

2. Incubated: Mature the software, migrate to OpenStack after 2 milestones of incubation

3. Integrated: Release as part of OpenStack

Copyright 2021 Nicholas Russo http://njrusmc.net 234

http://njrusmc.net


OpenStack has several components (and growing) which are discussed briefly below. The components
have code-names for quick reference within the OpenStack community; these are included in parentheses.
Many of the components are supplementary and don’t comprise core OpenStack deployments, but can add
value for specific cloud needs. Note that OpenStack compares directly to existing public cloud solutions
offered by large vendors, except is open source with all code being available under the Apache 2.0 license.

1. Compute (Nova): Fabric controller (the main part of an IaaS system). Manages pools of compute
resources. A compute resource could be a VM, container, or bare metal server. Side note: Containers
are similar to VMs except they share a kernel. They are otherwise independent, like VMs, and are
considered a lighter-weight yet secure alternative to VMs.

2. Networking (Neutron): Manages networks and IP addresses. Ensures the network is not a bottle-
neck or otherwise limiting factor in a production environment. This is technology-agnostic network
abstraction which allows the user to create custom virtual networks, topologies, etc. For example,
virtual network creation includes adding a subnet, gateway address, DNS, etc.

3. Block Storage (Cinder): Manages creation, attaching, and detaching of block storage devices to
servers. This is not an implementation of storage itself, but provides an API to access that storage.
Many storage appliance vendors often have a Cinder plug-in for OpenStack integration; this ultimately
abstracts the vendor-specific user interfaces from the management process. Storage volumes can
be detached and moved between instances (an interesting form of file transfer, for example) to share
information and migrate data between projects.

4. Identity (Keystone): Directory service contains users mapped to services they can access. Some-
what similar to group policies applied in corporate deployments. Tenants (business units, groups/teams,
customers, etc) are stored here which allows them to access resources/services within OpenStack;
commonly this is access to the OpenStack Dashboard (Horizon) to manage an OpenStack environ-
ment.

5. Image (Glance): Provides discovery, registration, and retrieval of virtual machine images. It supports
a RESTful API to query image metadata and the image itself.

6. Object Storage (Swift): Storage system with built-in data replication and integrity. Objects and files
are written to disk using this interface which manages the I/O details. Scalable and resilient storage
for all objects like files, photos, etc. This means the customer doesn’t have to deploy a block-storage
solution themselves, then manage the storage protocols (iSCSI, NFS, etc).

7. Dashboard (Horizon): The GUI for administrators and users to access, provision, and automate
resources. The dashboard is based on the Python Django framework and is layered on top of service
APIs. Logging in relies on Keystone for identity management which secures access to the GUI. The
dashboard supports different tenants with separate permissions and credentials; this is effectively
role-based access control. The GUI provides the most basic/common functionality for users without
needing CLI access, which is supported for advanced functions. The “security group” construct is used
to enforce access control (administrators often need to configure this before being able to access new
instances).

8. Orchestration (Heat): Orchestrates cloud applications via templates using a variety of APIs.

9. Workflow (Mistral): Manages user-created workflows (triggered manually or by some event).

10. Telemetry (Ceilometer): Provides a Single Point of Contact for billing systems used within the cloud
environment.

11. Database (Trove): This is a Database-as-a-service provisioning engine.

12. Elastic Map Reduce (Sahara): Automated way to provision Hadoop clusters, like a wizard.

13. Bare Metal (Ironic): Provisions bare metal machines rather than virtual machines.

14. Messaging (Zaqar): Cloud messaging service for Web Developments (full RESTful API) used to
communicate between SaaS and mobile applications.

Copyright 2021 Nicholas Russo http://njrusmc.net 235

http://njrusmc.net


15. Shared File System (Manila): Provides an API to manage shares in a vendor agnostic fashion
(create, delete, grant/deny access, etc).

16. DNS (Designate): Multi-tenant REST API for managing DNS (DNS-as-a-service).

17. Search (Searchlight): Provides search capabilities across various cloud services and is being inte-
grated into the Dashboard. Searching for compute instance status and storage system names are
common uses cases for administrators.

18. Key Manager (Barbican): Provides secure storage, provisioning, and management of secrets (pass-
words).

The key components of OpenStack and their interactions are depicted on the diagram that follows. The
source of this image is included in the references as it was not created by the author. This depicts a near-
minimal OpenStack deploy with respect to the number of services depicted. At the time of this writing and
according to OpenStack’s help forum, the minimum services required appear to be Nova, Keystone, Glance,
and Horizon. Such a deployment would not have any networking or remote storage support, but could be
used for developers looking to run code on OpenStack compute instances in isolation.

Figure 73: Openstack Component Interconnections

This section briefly explores installing OpenStack on Amazon AWS as an EC2 instance. This is effec-
tively “cloud inside of cloud” and while easy and inexpensive to install, is difficult to operate. As such, this
demonstration details basic GUI navigation, CLI troubleshooting, and Nova instance creation using Cinder
for storage.

For simplicity, packstack running on CentOS7 is used. The packstack package is a pre-made collection
of OpenStack’s core services, including but not limited to Nova, Cinder, Neutron (limited), Horizon, and
Keystone. Only these five services are explored in this demonstration.

The installation process for packstack on CentOS7 and RHEL7 can be found at RDOproject. The author
recommends using a t2.large or t2.xlarge AWS EC2 instance for the CentOS7/RHEL7 base operating
system. At the time of this writing, these instances cost less than 0.11 USD/hour and are affordable,
assuming the instance is terminated after the demonstration is complete. The author used AWS Route53
(DNS) service to map the packstack public IP to http://packstack.njrusmc.net (link is dead at the time
of this writing) to simplify access (this process is not shown). This is not required, but may simplify the
packstack HTTP server configuration later. Be sure to record the DNS name of the EC2 instance if you are
not using Route53 explicitly for hostname resolution; this name is auto-generated by AWS assuming the
EC2 instance is placed in the default VPC. Also, after installation completes, take note of the instructions
from the installer which provide access to the administrator password for initial login.

Copyright 2021 Nicholas Russo http://njrusmc.net 236

https://ask.openstack.org/en/question/63268/installing-minimum-services-using-devstack/
http://njrusmc.net


The author has some preparatory recommendations before logging into Horizon via the web GUI. Addition-
ally, be sure to execute these steps before rebooting or powering off the packstack instance.

Follow the current AWS guidance on how to change the hostname of a CentOS7/RHEL7 EC2 instance. The
reason is because, on initial provisioning, the hostname lacks the FQDN text which includes the domain
name (hostname versus hostname.ec2.internal). Change the hostname to remove all of the FQDN do-
main information for consistency within packstack. This will alleviate potential issues with false negatives as
it relates to nova compute nodes being down. The hostname command and the /etc/hostname file should
look like the output below:

[root@ip-172-31-9-84 ~(keystone_admin)]# hostname

ip-172-31-9-84

[root@ip-172-31-9-84 ~(keystone_admin)]# cat /etc/hostname

ip-172-31-9-84

In order to use the OpenStack CLI, many environment variables must be set. These variables can be set
in the keystonerc_admin file. It is easiest to source the file within root’s bash profile, then issue su - when
switching to the root user after logging in as “centos”. Alternatively, the contents of the file can be manually
pasted in the CLI as well. The author has already exported these environment variables which is why the
prompt in the output below says “keystone admin”.

root@ip-172-31-9-84 ~(keystone_admin)]# cat keystonerc_admin

unset OS_SERVICE_TOKEN

export OS_USERNAME=admin

export OS_PASSWORD=5e6ec577785047a8

export OS_AUTH_URL=http://172.31.9.84:5000/v3

export PS1='[\u@\h \W(keystone_admin)]\$ '

export OS_PROJECT_NAME=admin

export OS_USER_DOMAIN_NAME=Default

export OS_PROJECT_DOMAIN_NAME=Default

export OS_IDENTITY_API_VERSION=3

[root@ip-172-31-9-84 ~(keystone_admin)]# echo "source keystonerc_admin" >> ~/.bash_profile

[root@ip-172-31-9-84 ~(keystone_admin)]# tail -1 ~/.bash_profile

source keystonerc_admin

Next, if Horizon is behind a NAT device (which is generally true for AWS deployments), be sure to add a
ServerAlias in /etc/httpd/conf.d/15-horizon_vhost.conf, as shown below. This will allow HTTP GET
requests to the specific URL to be properly handled by the HTTP server running on the packstack instance.
Note that the VirtualHost tags already exist and the ServerAlias must be added within those bounds.

<VirtualHost *:80>

[snip]

ServerAlias packstack.njrusmc.net

[snip]

</VirtualHost>

The final pre-operations step recommended by the author is to reboot the system. The packstack installer
may also suggest this is required. After reboot, log back into packstack via SSH, switch to root with a full
login, and verify the hostname has been retained. Additionally, all packstack related environmental variables
should be automatically loaded, simplifying CLI operations.

Navigate to the packstack instance’s DNS hostname in a web browser. The OpenStack GUI somewhat
resembles that of AWS, which makes sense since both are meant to be cloud dashboards. The screenshot
that follows shows the main GUI page after login, which is the Identity -> Projects page. Note that
a “demo” project already exists, and fortunately for those new to OpenStack, there is an entire sample
structure built around this. This document will explore the demo project specifically.

Copyright 2021 Nicholas Russo http://njrusmc.net 237

http://njrusmc.net


Figure 74: Openstack Projects Page

This demonstration begins by exploring Keystone. Click on the Identity -> Users page, find the demo
user, and select “Edit”. The screen that follows shows some of the fields required, and most are self-evident
(name, email, password, etc). Update a few of the fields to add an email address and select a primary
project, though neither is required. For brevity, this demonstration does not explore groups and roles, but
these options are useful for management of larger OpenStack deployments.

Figure 75: Openstack Projects Page

Next, click on Identity -> Project and edit the demo project. The screenshots that follow depict the
demonstration configuration for the basic project information and team members. Only the demo user
is part of this project. Note that the Quota tab can be used in a multi-tenant environment, such as a
hosted OpenStack-as-a-service solution, to ensure that an individual project does not consume too many
resources.

Figure 76: Openstack Edit Project Information

The project members tab is shown below. Only the demo user is a member of the demo project by default,
and this demonstration does not make any modifications to this.

Figure 77: Openstack Edit Project Members

Copyright 2021 Nicholas Russo http://njrusmc.net 238

http://njrusmc.net


Nova is explored next. Navigate to Project -> Compute -> Images. There is already a CirrOS image
present, which is a small Linux-based OS designed for testing in cloud environments. Without much work,
we can quickly spin up a CirrOS instance on packstack for testing. Click on Launch next to the CirrOS image
to create a new instance. The Details tab is currently selected. The instance name will be CirrOS1; note
that there is only one availability zone. The dashboard also shows the result of adding these new instances
against the remaining limits of the system.

Figure 78: Openstack Launch Details

Under the Source tab, select Yes for Delete Volume on Instance Delete. This ensures that when the
instance is terminated, the storage along with it is deleted also. This is nice for testing when instances are
terminated regularly and their volumes are no longer needed. It’s also good for public cloud environments
where residual, unused volumes cost money (lesson learned the hard way). Click on the up arrow next to
the CirrOS instance to move it from the Available menu to the Allocated menu.

Figure 79: Openstack Launch Source

Under Flavor, select m1.tiny which is appropriate for CirrOS. These flavors are general sizing models for
the instance as it relates to compute, memory, and storage.

Copyright 2021 Nicholas Russo http://njrusmc.net 239

http://njrusmc.net


Figure 80: Openstack Launch Flavor

At this point, it is technically possible to launch the instance, but there are other important fields to consider.
It would be exhaustive to document every single instance option, so only the most highly relevant ones are
explored next.

Under Security Groups, note that the instance is part of the default security group since no explicit ones
were created. This group allows egress communication to any IPv4 or IPv6 address, but no unsolicited
ingress communication. Security Groups are stateful, so that returning traffic is allowed to reach the in-
stance on ingress. This is true in the opposite direction as well; if ingress rules were defined, returning
traffic would be allowed outbound even if the egress rules were not explicit matched. AWS EC2 instance
security groups work similarly, except only in the ingress direction. No changes are needed on this page for
this demonstration.

Figure 81: Openstack Launch Security Groups

Packstack does not come with any key pairs by default, which make sense since the private key is only
available once at the key pair creation time. Under Key Pair, click on Create Key Pair. Be sure to store
the private key somewhere secure that provides confidentiality, integrity, and availability. Any Nova instances
deployed using this key pair can only be accessed using the private key file, much like a specific key opens
a specific lock.

Copyright 2021 Nicholas Russo http://njrusmc.net 240

http://njrusmc.net


Figure 82: Openstack Key Pair Creation

After the key pair is generated, it can be viewed below and downloaded.

Figure 83: Openstack Mapping Key Pair to Instance

The OpenSSH client program (standard on Linux and Mac OS) will refuse to use private keys with their
SSH clients unless the file is secured in terms of accessibility. In this case, the file permissions are reduced
to read-only for the owning user and no others using the chmod 0400 command in Linux and Mac OS.
The command below sets the “read” permission for the file’s owner (nicholasrusso) and removes all other
permissions.

Nicholass-MBP:ssh nicholasrusso$ ls -l CirrOS1-kp.pem

-rw-r--r--@ 1 nicholasrusso staff 1679 Aug 13 12:45 CirrOS1-kp.pem

Nicholass-MBP:ssh nicholasrusso$ chmod 0400 CirrOS1-kp.pem

Nicholass-MBP:ssh nicholasrusso$ ls -l CirrOS1-kp.pem

-r--------@ 1 nicholasrusso staff 1679 Aug 13 12:45 CirrOS1-kp.pem

Click on Launch Instance and navigate back to the main Instances menu. The screenshot that follows
shows two separate CirrOS instances as the author repeated the procedure twice.

Copyright 2021 Nicholas Russo http://njrusmc.net 241

http://njrusmc.net


Figure 84: Openstack Instances (Compute)

Exploring the volumes for these instances shows the iSCSI disks (block storage on Cinder) mapped to each
CirrOS compute instance.

Figure 85: Openstack Instances (Volumes)

Accessing these instances, given the “cloud inside of cloud architecture”, is non-trivial. The author does not
cover the advanced Neutron configuration to make this work, so accessing the instances is not covered in
this demonstration. Future releases of this document may detail this.

Moving back to the CLI, there are literally hundreds of OpenStack commands used for configuration and
troubleshooting of the cloud system. The author’s favorite three Nova commands are shown next. Note
that some of the columns were omitted to have it fit nicely on the screen, but the information removed was
not terribly relevant for this demonstration. The host-list shows the host names and their services. The
service-list is very useful to see if any hosts or services are down or disabled. The general list enumerates
the configured instances. The two instances created above are displayed there.

[root@ip-172-31-9-84 ~(keystone_admin)]# nova host-list

+----------------+-------------+----------+

| host_name | service | zone |

+----------------+-------------+----------+

| ip-172-31-9-84 | cert | internal |

| ip-172-31-9-84 | conductor | internal |

| ip-172-31-9-84 | scheduler | internal |

| ip-172-31-9-84 | consoleauth | internal |

| ip-172-31-9-84 | compute | nova |

+----------------+-------------+----------+

[root@ip-172-31-9-84 ~(keystone_admin)]# nova service-list

+----+------------------+----------------+----------+----------+-------+

| Id | Binary | Host | Zone | Status | State |

Copyright 2021 Nicholas Russo http://njrusmc.net 242

http://njrusmc.net


+----+------------------+----------------+----------+----------+-------+

| 6 | nova-cert | ip-172-31-9-84 | internal | enabled | up |

| 7 | nova-conductor | ip-172-31-9-84 | internal | enabled | up |

| 8 | nova-scheduler | ip-172-31-9-84 | internal | enabled | up |

| 9 | nova-consoleauth | ip-172-31-9-84 | internal | enabled | up |

| 10 | nova-compute | ip-172-31-9-84 | nova | enabled | up |

+----+------------------+----------------+----------+----------+-------+

[root@ip-172-31-9-84 ~(keystone_admin)]# nova list

+----------------------+---------+--------+---------+--------------------+

| ID | Name | Status | Power | Networks |

+----------------------+---------+--------+---------+--------------------+

| 9dca3460-36b6-(snip) | CirrOS1 | ACTIVE | Running | public=172.24.4.13 |

| 2e4607d0-c49b-(snip) | CirrOS2 | ACTIVE | Running | public=172.24.4.2 |

+----------------------+---------+--------+---------+--------------------+

When the CirrOS instances were created, each was given a 1 GiB disk via iSCSI, which is block storage.
This is the Cinder service in action. The chart below shows each volume mapped to a given instance; note
that a single instance could have multiple disks, just like any other machine.

[root@ip-172-31-9-84 ~(keystone_admin)]# cinder list

+-----------------+--------+------+--------+----------+-----------------+

| ID | Status | Size | Volume | Bootable | Attached |

+-----------------+--------+------+--------+----------+-----------------+

| 0681343e-(snip) | in-use | 1 | iscsi | true | 9dca3460-(snip) |

| 08554c2f-(snip) | in-use | 1 | iscsi | true | 2e4607d0-(snip) |

+-----------------+--------+------+--------+----------+-----------------+

The command that follows shows basic information about the public subnet that comes with the packstack
installer by default. Neutron was not explored in depth in this demonstration.

[root@ip-172-31-9-84 ~(keystone_admin)]# neutron net-show public

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | nova |

| created_at | 2017-08-14T01:53:35Z |

| description | |

| id | f627209e-a468-4924-9ee8-2905a8cf69cf |

| ipv4_address_scope | |

| ipv6_address_scope | |

| is_default | False |

| mtu | 1500 |

| name | public |

| project_id | d20aa04a11f94dc182b07852bb189252 |

| provider:network_type | flat |

| provider:physical_network | extnet |

| provider:segmentation_id | |

| revision_number | 5 |

| router:external | True |

| shared | False |

| status | ACTIVE |

| subnets | cbb8bad6-8508-45a0-bbb9-86546f853ae8 |

| tags | |

| tenant_id | d20aa04a11f94dc182b07852bb189252 |

| updated_at | 2017-08-14T01:53:39Z |

+---------------------------+--------------------------------------+

Copyright 2021 Nicholas Russo http://njrusmc.net 243

http://njrusmc.net


4.1.3 Cloud Comparison Chart

Those who don’t need to create and operate their own private clouds may be inclined to use a well-known
and trusted public cloud provider. At the time of this writing, the three most popular cloud providers are
Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). The table below com-
pares the OpenStack components to their counterparts in the aforementioned public cloud providers. The
chart below is the result of the author’s personal research and will likely change over time as these
cloud providers modify their cloud offerings.

Component/Utility OpenStack AWS MS Azure GCP

Compute Nova EC2 VMs Compute Engine

Network Neutron VPC Virtual Network VPC

Block Storage Cinder EBS Storage Disk Persistent Disk

Identity Keystone IAM Active Directory Cloud IAM

Image Glance Lightsail VMs and Images Cloud Vision API

Object Storage Swift S3 Storage Cloud Storage

Dashboard Horizon Console Portal Console

Orchestration Heat Batch Batch Cloud Dataflow

Workflow Mistral SWF Logic Apps Cloud Dataflow

Telemetry Ceilometer CloudWatch VS App Insights Cloud Pub/Sub

Database Trove RDS SQL Database Cloud Spanner

Map Reduce Sahara EMR HDInsight BigQuery

Messaging Zaqar SQS Queue Storage Cloud Pub/Sub

Shared Files Manila EFS File Storage FUSE

DNS Designate Route 53 DNS Cloud DNS

Search Searchlight Elastic Search Elastic Search SearchService

Key Manager Barbican KMS Key Vault Cloud KMS

Table 8: Commercial Cloud Provider Comparison

4.2 Network Programmability

4.2.1 SDN Controllers

Controllers are components that are responsible for programming forwarding tables of data-plane devices.
Controllers themselves could even be routers, like Cisco’s PfR operating as a master controller (MC), or
they could be software-only appliances, as seen with OpenFlow networks or Cisco’s Application Policy
Infrastructure Controller (APIC) used with ACI. The models discussed above help detail the significance of
the controller; this is entirely dependent on the deployment model. The more involved a controller is, the
more flexibility the network administrator gains. This must be weighed against the increased reliance on the
controller itself.

A well-known example of an SDN controller is Open DayLight (ODL). ODL is commonly used as the SDN
controller for OpenFlow deployments. OpenFlow is the communications protocol between ODL and the
data-plane devices responsible for forwarding packets (southbound). ODL communicates with business
applications via APIs so that the network can be programmed to meet the requirements of the applications
(northbound).

Copyright 2021 Nicholas Russo http://njrusmc.net 244

http://njrusmc.net


It is worth discussing a few of Cisco’s solutions in this section as they are both popular with customers and
relevant to Cisco’s vision of the future of networking. Cisco’s Intelligent WAN (IWAN) is an evolutionary strat-
egy to bring policy abstraction to the WAN to meet modern design requirements, such as path optimization,
cost reduction via commodity transport, and transport independence. IWAN has several key components:

1. Dynamic Multipoint Virtual Private Network (DMVPN): This feature is a multipoint IP tunneling
mechanism that allows sites to communicate to a central hub site without the hub needing to config-
ure every remote spoke. Some variants of DMVPN allow for direct spoke-to-spoke traffic exchange
using a reactive control-plane used to map overlay and underlay addresses into pairs. DMVPN can
provide transport independence as it can be used as an overlay atop the public Internet, private WANs
(MPLS), or any other transport that carries IP.

2. IP Service Level Agreement (IP SLA): This feature is used to synthesize traffic to match application
flows on the network. By sending probes that look like specific applications, IWAN can test application
performance and make adjustments. This is called “active monitoring”. The newest version of PfR
(version 3) used within IWAN 2.0 no longer uses IP SLA. Instead, it uses Cisco-specific “Smart
Probes” which provide some additional monitoring capabilities.

3. Netflow: Like probes, Netflow is used to measure the performance of specific applications across an
IWAN deployment, but does so without sending traffic. These measurements can be used to estimate
bandwidth utilization, among other things. This is called “passive monitoring”.

4. IP Routing: Although not a new feature, some kind of overlay routing protocol is still needed. One of
IWAN’s greatest strengths is that it can still rely on IP routing for a subset of flows, while choosing to
optimize others. A total failure of the IWAN “intelligence” constructs will allow the WAN to fall back to
classic IP routing, which is a known-good design and guaranteed to work. For this reason, existing
design best practices and requirements gathering cannot be skipped when IWAN is deployed as these
decisions can have significant business impacts.

5. Performance Routing (PfR): PfR is the glue of IWAN that combines all of the aforementioned fea-
tures into a comprehensive and functional system. It enhances IP routing in a number of ways:

(a) Adjusting routing attributes, such as BGP local-preference, to prefer certain paths

(b) Injecting longer matches to prefer certain paths

(c) Installing dynamic route-maps for policy-routing when application packets are to be forwarded
based on something other than their destination IP address

When PfR is deployed, PfR speakers are classified as master controllers (MC) or border routers (BR). MCs
are the SDN “controllers” where policy is configured and distributed. The BRs are relatively unintelligent
in that they consume commands from the MC and apply the proper policy. There can be a hierarchy of
MC/BR as well to provide greater availability for remote sites that lose WAN connectivity. MCs are typically
deployed in a stateless HA pair using loopback addresses with variable lengths; the MCs typically exist in
or near the corporate data centers.

The diagram that follows depicts a high-level drawing of how IWAN works (from Cisco’s IWAN wiki page).
IWAN is generally positioned as an SD-WAN solution as a way to connect branch offices to HQ locations,
such as data centers.

Copyright 2021 Nicholas Russo http://njrusmc.net 245

http://njrusmc.net


Figure 86: Cisco IWAN High Level Architecture

4.2.2 DevOps methodologies, tools and workflows

The term “DevOps” is relatively new and is meant to describe not just a job title but a cultural shift in service
delivery, management, and operation. It was formerly known as “agile system administration” or “agile
methodology”. The keyword “agile” typically refers to the integration of development and operations staff
throughout the entire lifecycle of a service. The idea is to tear down the silos and the resulting poor service
delivery that both teams facilitate. Often times, developers will create applications without understanding
the constraints of the network, while the network team will create a network (ineffective QoS, slow rerouting,
etc) policies that don’t support the business-critical applications.

The tools and workflows used within the DevOps community are things that support an information sharing
environment. Many of them are focused on version control, service monitoring, configuration management,
orchestration, containerization, and everything else needed to typically support a service through its lifecy-
cle. The key to DevOps is that using a specific DevOps tool does not mean an organization has embraced
the DevOps culture or mentality. A good phrase is “People over Process over Tools”, as the importance of
a successful DevOps team is reliance on those things, in that order.

DevOps also introduces several new concepts. Two critical ones are continuous integration (CI) and con-
tinuous delivery (CD). The CI/CD mindset suggests several changes to traditional software development.
Some of the key points are listed here.

1. Everyone can see the changes: Dev, Ops, Quality Assurance (QA), management, etc.

2. Verification is an exact clone of the production environment, not simply a smoke-test on a developer’s
test bed

3. The build and deployment/upgrade process is automated

4. Provide software in short timeframes and ensure releases are always available in increments

5. Reduce friction, increase velocity

6. Reduce silos, increase collaboration

On the topic of software development models, it is beneficial to compare the commonly used models with
the new agile or DevOps mentality. Additional details on these software development models can be found
in the references. The table that follows contains a comparison chart of the different models.

Waterfall Iterative Agile

Copyright 2021 Nicholas Russo http://njrusmc.net 246

http://njrusmc.net


Summary Five serial phases, no
feedback

1. Requirements
2. Design
3. Implementation
4. Verification
5. Maintenance

Like the waterfall
model, but operates in
loops. This creates a
feedback mechanism
at each cycle to
promote a faster and
more flexible process.

Advances when the
current function or step
is complete; cyclical
model.

Pros Simple, well
understood, long
history, requires
minimal resources and
management oversight

Simple, well
understood,
opportunity to adjust,
requires slightly more
resources than
waterfall (but still
reasonable)

Customer is engaged
(better feedback), early
detection of issues
during rapid code
development periods
(sprints)

Cons Difficult to revert,
customer is not
engaged until the end,
higher risk, slow to
deliver

Can be inefficient,
customer feedback
comes at the end of an
iteration (not within)

High quantity of
resources required,
more focused
management and
customer interaction
needed

Table 9: Software Development Methodology Comparison

There are a number of popular Agile methodologies. Two of them are discussed below.

1. Scrum is considered lightweight as the intent of most Agile methodologies is to maximize the amount
of productive work accomplished during a given time period. In Scrum, a “sprint” is a period of time
upon which certain tasks are expected to be accomplished. At the beginning of the sprint, the Scrum
Master (effectively a task manager) holds a ˜4 hour planning meeting whereby work is prioritized and
assigned to individuals. Tasks are pulled from the sprint backlog into a given sprint. The only meetings
thereafter (within a sprint) are typically 15 minute daily stand-ups to report progress or problems (and
advance items across the Scrum board). If a sprint is 2 weeks ( 80 hours) then only about 6 hours of
it is spent in meetings. This may or may not include a retrospective discussion at the end of a sprint to
discuss what went well/poorly. Tasks such as bugs, features, change requests, and more topics are
tracked on a “scrum board” which drives the work for the entire sprint.

2. Kanban is another Agile methodology which seeks to further optimize useful work done. Unlike
scrum, it is less structured in terms of time and it lacks the concept of a sprint. As such, there is
neither a sprint planning session nor a sprint retrospective. Rather than limit work by units of time,
it limits work by the number of concurrent tasks occurring at once. The Kanban board, therefore, is
more focused on tracking the number of tasks (sometimes called stories) within a single chronological
point in the development cycle (often called Work In Progress or WIP). The most basic Kanban board
might have three columns: To Do, Doing, Done. Ensuring that there is not too much work in any
column keeps productivity high. Additionally, there is no official task manager in Kanban, though an
individual may assume a similar role given the size/scope of the project. Finally, release cycles are
not predetermined, which means releases can be more frequent.

Although these Agile methodologies were initially intended for software development, they can be adapted
for work in any industry. The author has personally seen Scrum used within a network security engineering
team to organize tasks, limit the scope of work over a period of time, and regularly deliver production-ready
designs, solutions, and consultancy to a large customer. The author personally uses Kanban for personal
task management, as well as network operations and even home construction projects. Both strategies
have universal applicability.

Copyright 2021 Nicholas Russo http://njrusmc.net 247

http://njrusmc.net


4.2.3 Basic Jenkins Setup Demonstration

Several CI/CD tools exist today. A common, open-source tool is known as Jenkins which can be used for
many CI/CD workflows. The feature list from Jenkins’ website (included in the references) nicely summa-
rizes the features of the tool.

1. Continuous Integration and Continuous Delivery: As an extensible automation server, Jenkins
can be used as a simple CI server or turned into the continuous delivery hub for any project.

2. Easy installation: Jenkins is a self-contained Java-based program, ready to run out-of-the-box, with
packages for Windows, Mac OS X and other Unix-like operating systems.

3. Easy configuration: Jenkins can be easily set up and configured via its web interface, which includes
on-the-fly error checks and built-in help.

4. Plugins: With hundreds of plugins in the Update Center, Jenkins integrates with practically every tool
in the continuous integration and continuous delivery toolchain.

5. Extensible: Jenkins can be extended via its plugin architecture, providing nearly infinite possibilities
for what Jenkins can do.

6. Distributed: Jenkins can easily distribute work across multiple machines, helping drive builds, tests
and deployments across multiple platforms faster.

In this demonstration, the author explores two common Jenkins usages. The first is utilizing the Git and
Github plugins to create a “build server” for code maintained in a repository. The demonstration will be
limited to basic Jenkins installation, configuration, and integration with a Github repository. The actual
testing of the code itself is a follow-on step that readers can perform according to their CI/CD needs. This
demonstration uses an Amazon Linux EC2 instance in AWS, which is similar to Redhat Linux.

Before installing Jenkins on a target Linux machine, ensure Java 1.8.0 is installed to prevent any issues.
The commands below accomplish this, but the outputs are not shown for brevity.

yum install -y java-1.8.0-openjdk.x86_64

alternatives --set java /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/java

alternatives --set javac /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/javac

To install Jenkins, issue these commands as root (indentation included for readability). Technically, some of
these commands can be issued from a non-root user. The AWS installation guide for Jenkins, included in
the references, suggests doing so as root.

wget -O /etc/yum.repos.d/jenkins.repo \

http://pkg.jenkins-ci.org/redhat/jenkins.repo

rpm --import https://pkg.jenkins.io/redhat/jenkins.io.key

yum install jenkins

service jenkins start

Verify Jenkins is working after the completing the installation. Also, download the jenkins.war file ( 64MB)
to get Jenkins CLI access, which is useful for bypassing the GUI for some tasks. Because the file is large,
users may want to run it as a background task by appending & to the command (not shown). It is used
below to check the Jenkins version.

[root@ip-10-125-0-85 .ssh]# service jenkins status

jenkins (pid 2666) is running...

[root@ip-10-125-0-85 jenkins]# wget -q http://mirrors.jenkins.io/war/1.649/jenkins.war

[root@ip-10-125-0-85 jenkins]# java -jar jenkins.war --version

1.649

Once installed, log into Jenkins at http://jenkins.njrusmc.net:8080/, substituting the correct host ad-
dress. Enable the Git plugins via Manage Jenkins > Manage Plugins > Available tab. Enter git in the

Copyright 2021 Nicholas Russo http://njrusmc.net 248

http://njrusmc.net


search bar. Select the plugs shown below and install them. Each one will be installed, along with all their
dependencies.

Figure 87: Jenkins git Plugins

Log into Github and navigate to Settings > Developer settings > Personal access tokens. These
tokens can be used as an easy authentication method via shared-secret to access Github’s API. When
generating a new token, admin:org_hook must be granted at a minimum, but in the interest of experimen-
tation, the author selected a few other options as depicted in the image that follows.

Figure 88: Jenkins Personal Github Access Token

After the token has been generated and the secret copied, go to Credentials > Global Credentials and
create a new credential. The graphic below depicts all parameters. This credential will be used for the
Github API integration.

Figure 89: Jenkins Personal Access Tokens

Next, navigate to Manage Jenkins > Configure System, then scroll down to the Git and Github configura-
tions. Configure the Git username and email under the Git section. For the Github section, the secret text
authentication method should be used to allow Github API access.

Figure 90: Jenkins User-specific Plugins

Copyright 2021 Nicholas Russo http://njrusmc.net 249

http://njrusmc.net


Figure 91: Setting up Github Integration on Jenkins

The global Jenkins configuration for Git/Github integration is complete. Next, create a new repository (or
use an existing one) within Github. This process is not described as Github basics are covered elsewhere
in this book. The author created a new repository called jenkins-demo.

After creating the Github repository, the following commands are issued on the user’s machine to make a
first commit. Github provides these commands in an easy copy/paste format to get started quickly. The
assumption is that the user’s laptop already has the correct SSH integration with Github.

MacBook-Pro:jenkins-demo nicholasrusso$ echo "# jenkins-demo" >> README.md

MacBook-Pro:jenkins-demo nicholasrusso$ git init

Initialized empty Git repository in /Users/nicholasrusso/projects/jenkins-demo/.git/

MacBook-Pro:jenkins-demo nicholasrusso$ git add README.md

MacBook-Pro:jenkins-demo nicholasrusso$ git commit -m "first commit"

[master (root-commit) ac98dd9] first commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

MacBook-Pro:jenkins-demo nicholasrusso$ git remote add origin \

> git@github.com:nickrusso42518/jenkins-demo.git

MacBook-Pro:jenkins-demo nicholasrusso$ git push -u origin master

Counting objects: 3, done.

Writing objects: 100% (3/3), 228 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@github.com:nickrusso42518/jenkins-demo.git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

After this initial commit, a simple Ansible playbook has been added as our source code. Intermediate
file creation and Git source code management (SCM) steps are omitted for brevity, but there are now two
commits in the Git log. As it relates to Cisco Evolving Technologies, one would probably commit customized
code for Cisco Network Services Orchestration (NSO) or perhaps Cisco-specific Ansible playbooks for
testing. Jenkins would be able to access these files, test it (or on a slave processing node within the Jenkins
system), and provide feedback about the build’s quality. Jenkins can be configured to initiate software builds
(including compilation) using a variety of tools and these builds can be triggered from a variety of events.
These features are not explored in detail in this demonstration.

---

# sample-pb.yml

- hosts: localhost

connection: local

gather_facts: false

tasks:

- file:

path: "/etc/ansible/ansible.cfg"

state: present

...

Copyright 2021 Nicholas Russo http://njrusmc.net 250

http://njrusmc.net


MBP:jenkins-demo nicholasrusso$ git log --oneline --decorate

bb91945 (HEAD -> master, origin/master) Create sample-pb.yml

ac98dd9 first commit

Next, log into the Jenkins box, wherever it exists (the author is using AWS EC2 to host Jenkins for this demo
on an m3.medium instance). SSH keys must be generated in the Jenkins users’ home directory since this is
the user running the software. In the current release of Jenkins, the home directory is /var/lib/jenkins/.

[root@ip-10-125-0-85 ~]# grep jenkins /etc/passwd

jenkins:x:498:497:Jenkins Automation Server:/var/lib/jenkins:/bin/false

The intermediate Linux file system steps to create the ~/.ssh/ directory and ~/.ssh/known_hosts file are
not shown for brevity. Additionally, generating RSA2048 keys is not shown. Navigating to the .ssh directory
is recommended since there are additional commands that use these files.

[root@ip-10-125-0-85 .ssh]# pwd

/var/lib/jenkins/.ssh

[root@ip-10-125-0-85 .ssh]# ls

id_rsa id_rsa.pub known_hosts

Next, add the Jenkins user’s public key to Github under either your personal username or a Jenkins utility
user (preferred). The author uses his personal username for brevity in this example shown in the diagram
that follows.

[root@ip-10-125-0-85 .ssh]# cat id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDd6qISM3f/mhmSeauR6DSFMhvlT8QkXyyY73Tk8Nu

f+SytelhP15gqTao3iA08LlpOBOnvtGXVwHEyQhMu0JTfFwRsTOGRRl3Yp9n6Y2/8AGGNTp+Q4tGpcz

Zkh/Xs7LFyQAK3DIVBBnfF0eOiX20/dC5W72aF3IzZBIsNyc9Bcka8wmVb2gdYkj1nQg6VQI1C6yayL

wyjFxEDgArGbWk0Z4GbWqgfJno5gLT844SvWmOWEJ1jNIw1ipoxSioVSSc/rsA0A3e9nWZ/HQGUbbhI

OGx7k4ruQLTCPeduU+VgIIj3Iws1tFRwc+lXEn58qicJ6nFlIbAW1kJj8I/+1fEj jenkins-ssh-key

Figure 92: Github SSH Keys for Jenkins Access

The commands below verify that the keys are functional. Note that the -i flag must be used because the
command is run as root, and a different identity file (Jenkins’ user private key) should be used for this test.

[root@ip-10-125-0-85 .ssh]# ssh -T git@github.com -i id_rsa

Hi nickrusso42518! You've successfully authenticated, but GitHub does not provide shell access.

Before continuing, edit the /etc/passwd file as root to give the Jenkins user access to any valid shell (bash
or sh). Additionally, use yum or apt-get to install git so that Jenkins can issue git commands. The git

installation via yum is not shown for brevity.

[root@ip-10-125-0-85 plugins]# grep jenkins /etc/passwd

jenkins:x:498:497:Jenkins Automation Server:/var/lib/jenkins:/bin/bash

Once Git is installed and Jenkins has shell access, copy the repository URL in SSH format from Github and
substitute it as the repository argument in the command below. This is the exact command that Jenkins tries

Copyright 2021 Nicholas Russo http://njrusmc.net 251

http://njrusmc.net


to run when a project’s SCM is set to git; this tests reachability to a repository using SSH. If you accidentally
run the command as root, it will fail due to using root’s public key rather than Jenkins’ public key. Switch to
the Jenkins user, try again, and test the return code (0 means success).

[root@ip-10-125-0-85 plugins]# git ls-remote -h \

git@github.com:nickrusso42518/jenkins-demo.git HEAD

Permission denied (publickey).

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

[root@ip-10-125-0-85 plugins]# su jenkins

bash-4.2$ git ls-remote -h \

> git@github.com:nickrusso42518/jenkins-demo.git HEAD

bash-4.2$ echo $?

0

The URL above can be copied by starting to clone the Github repository as shown below. Be sure to select
SSH to get the correct repository link.

Figure 93: Github Repository URL for Jenkins Demo

At this point, adding a new Jenkins project should succeed when the repository link is supplied. This is an
option under SCM for the project whereby the only choices are git and None. If it fails, an error message will
be prominently displayed on the screen and the error is normally related to SSH setup. Do not specify any
credentials for this because the SSH public key method is inherent with the setup earlier. The screenshot
that follows depicts this process.

Figure 94: Jenkins Source Code Management via git

As a final check, you can view the Console Output for this project/build by clicking the icon on the left.
It reveals the git commands executed by Jenkins behind the scenes to perform the pull, which is mostly

Copyright 2021 Nicholas Russo http://njrusmc.net 252

http://njrusmc.net


git fetch to pull down new data from the Github repository associated with the project.

Started by user anonymous

Building in workspace /var/lib/jenkins/workspace/jenkins-demo

Cloning the remote Git repository

Cloning repository git@github.com:nickrusso42518/jenkins-demo.git

> git init /var/lib/jenkins/workspace/jenkins-demo # timeout=10

Fetching upstream changes from git@github.com:nickrusso42518/jenkins-demo.git

> git --version # timeout=10

> git fetch --tags --progress git@github.com:nickrusso42518/jenkins-demo.git \

> +refs/heads/*:refs/remotes/origin/*

> git config remote.origin.url git@github.com:nickrusso42518/jenkins-demo.git # timeout=10

[snip]

Commit message: "Create sample-pb.yml"

First time build. Skipping changelog.

Finished: SUCCESS

The project workspace shows the files in the repository, which includes the newly created Ansible playbook.

Figure 95: Jenkins Project Workspace

This section briefly explores configuring Jenkins integration with AWS EC2. There are many more detailed
guides on the Internet which describe this process; this book includes the author’s personal journey into
setting it up. Just like with Git, the AWS EC2 plugins must be installed. Look for the AWS EC2 plugin as
shown in the diagram that follows, and install it. The Jenkins wiki concisely describes how this integration
works and what problems it can solve:

Allow Jenkins to start slaves on EC2 or Eucalyptus on demand, and kill them as they get unused. With this
plugin, if Jenkins notices that your build cluster is overloaded, it’ll start instances using the EC2 API and
automatically connect them as Jenkins slaves. When the load goes down, excessive EC2 instances will be
terminated. This set up allows you to maintain a small in-house cluster, then spill the spiky build/test loads
into EC2 or another EC2 compatible cloud.

Figure 96: AWS EC2 Plugin for Jenkins Integration

Log into the AWS console and navigate to the Identity Access Management (IAM) service. Create a new
user that has full EC2 access which effectively grants API access to EC2 for Jenkins. The user will come
with an access ID and secret access key. Copy both pieces of information as Jenkins must know both.

Copyright 2021 Nicholas Russo http://njrusmc.net 253

http://njrusmc.net


Figure 97: Adding Jenkins User in AWS IAM

Next, create a new credential of type AWS credential. Populate the fields as shown below.

Figure 98: Jenkins AWS Credential Creation

Navigate back to Manage Jenkins > Configure System > Add a new cloud. Choose Amazon EC2 and
populate the credentials option with the recently created AWS credentials using the secret access key for
the IAM user jenkins. You must select a specific AWS region. Additionally, you’ll need to paste the EC2
private key used for any EC2 instances managed by Jenkins. This is not for general AWS API access but
for shell access to EC2 instances in order to control them. For security, you can create a new key pair within
AWS (recommended but not shown) for Jenkins-based hosts in case the general-purpose EC2 private key
is stolen.

Figure 99: Adding AWS Cloud Option via Jenkins

You can validate the connection using the Test Connection button which should result in success.

Figure 100: Testing Connection from AWS to Jenkins

The final step is determining what kind of AMIs Jenkins should create within AWS. There can be multiple
AMIs for different operating systems, including Windows, depending on the kind of testing that needs to be
done. Perhaps it is useful to run the tests on different OS’ as part of a more comprehensive testing strategy
for software portability. There are many options to enter and the menu is somewhat similar to launching
native instances within EC2. A subset of options is shown here; note that you can validate the spelling of
the AMI codes (accessible from the AWS EC2 console) using the Check AMI button. More details on this
process can be found in the references.

Copyright 2021 Nicholas Russo http://njrusmc.net 254

http://njrusmc.net


Figure 101: Jenkins AMIs within EC2

With both Github and AWS EC2 integration set up, a developer can create large projects complete with
automated testing from SCM repository and automatic scaling within the public cloud. Provided there was
a larger, complex project which requires slave processing nodes, EC2 nodes would be dynamically created
based on the need or the administrator assigned labels within a project.

Jenkins is not the only commonly used CI/CD tool. Gitlab, which is private (on-premises) version of Github,
supports source code management (SCM) and CI/CD together. A real-life example of this implementation
is provided in the references. All of these options come at a very low price and allow individuals to deploy
higher quality code more rapidly, which is a core tenant of Agile software development. The author has
participated in a number of free podcasts on CI/CD and has used a variety of different providers. These
podcasts are linked in the references.

4.3 Internet of Things

4.3.1 Performance, Reliability, and Scalability

The performance of IoT devices is going to be a result of the desired security and the access type. Many
IoT devices will be equipped with relatively inexpensive and weak hardware; this is sensible from a business
perspective as the device only needs to perform a few basic functions. This could be seen as a compro-
mise of security since strong ciphers typically require more computational power for encryption/decryption
functionality. In addition, some IoT devices may be expected to last for decades while it is highly unlikely
that the same is true about cryptographic ciphers. In short, more expensive hardware is going to be more
secure and resilient.

The access type is mostly significant when performance is discussed. Although 4G LTE is very popular
and widespread in the United States and other countries, it is not available everywhere. Some parts of
the world are still heavily reliant on 2G/3G cellular service which is less capable and slower. A widely
distributed IoT network may have a combination of these access types with various levels of performance.
Higher performing 802.11 Wi-Fi speeds typically require more expensive radio hardware, more electricity,
and a larger physical size. Physical access types (wired devices) will be generally immobilized which could
be considered a detriment to physical performance, if mobility is required for an IoT device to do its job
effectively.

Copyright 2021 Nicholas Russo http://njrusmc.net 255

http://njrusmc.net


5 Glossary of Terms

Acronym Definition/Meaning

6LoWPAN IPv6 over Low Power WPANs

ACI Application Centric Infrastructure

AFV Application Function Virtualization

AMI Amazon Machine Instance (AWS)

API Application Programming Interface

APIC Application Policy Infrastructure Controller (ACI)

ARN Amazon Resource Name

ASA Adaptive Security Appliance (virtual)

AWS Amazon Web Services

AZ Availability Zone

BGP Border Gateway Protocol

BR Border Router

CAPEX Capital Expenditures

CCB Configuration Control Board

CI/CD Continuous Integration/Continuous Development

CH Cluster Head (see LEACH, TEEN, etc.)

CM Configuration Management

COAP Constrained Application Protocol

COTS Commercial Off The Shelf

CSP Cloud Service Provider

CSPF Constrained Shortest Path First (see MPLS, TE)

CUC Cisco Unity Connection

DC Data Center

DCN Data Center Network

DCOM Distributed Component Object Model (Microsoft)

DEEC Distributed Energy Efficient Clustering

DDEEC Developed Distributed Energy Efficient Clustering

DHCP Dynamic Host Configuration Protocol

DMVPN Dynamic Multipoint VPN

DNA Digital Network Architecture

DNA-C Digital Network Architecture Center

DNS Domain Name System

DTD Document Type Definition (see HTML)

DTLS Datagram TLS (UDP)

DVS Distributed Virtual Switch

Copyright 2021 Nicholas Russo http://njrusmc.net 256

http://njrusmc.net


EBS Elastic Block Storage (AWS)

EC2 Elastic Compute Cloud (AWS)

EDEEC Enhanced Distributed Energy Efficient Clustering

EID Endpoint Identifier (see LISP)

GRE Generic Routing Encapsulation

gRPC Google Remote Procedure Call

HAL Hardware Abstraction Layer

HCL Hasicorp Configuration Language (Terraform)

HTML HyperText Markup Language

HTTP HyperText Transport Protocol (see HTML)

I2RS Interface to the Routing System

IaaS Infrastructure as a service (generic)

IDL Interface Definition Language (gRPC)

IMP Instant Messaging and Presence

IoT Internet of Things

iSCSI Internet Small Computer System Interface (see SAN)

ISP Internet Service Provider

ISR Integrated Services Router

IT Information Technology

IX/IXP Internet eXchange/Point

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine (Linux)

LAN Local Area Network

LEACH Low-Energy Adaptive Clustering Hierarchy

LEACH-C Low-Energy Adaptive Clustering Hierarchy – Centralized

LISP Locator/Identifier Separation Protocol

LLN Low power and Lossy Networks

LSP Label Switched Patch (see MPLS)

LXC Linux Containers

MC Master Controller (MC)

MIB Management Information Base (see SNMP)

MPLS Multi Protocol Label Switching

MQTT Message Queuing Telemetry Transport

MTE Minimum Transfer of Energy

MTU Maximum Transmission Unit

RPC Remote Procedure Call (NETCONF)

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

Copyright 2021 Nicholas Russo http://njrusmc.net 257

http://njrusmc.net


NFVIS Network Function Virtualization Infrastructure Software (hypervisor)

NGIPSv Next-Generation Intrusion Prevention System (virtual)

NHRP Next-hop Resolution Protocol

NMS Network Management System

NOS Network Operating System

NSH Network Services Header

NSP Network Service Provider

NVGRE Network Virtualization using GRE

ODBC Open Database Connectivity

ODL Open DayLight (see SDN)

OF OpenFlow (see SDN)

OSI Open Systems Interconnection model

OPEX Operational Expenditures

OT Operations Technology

OVS Open vSwitch

PaaS Platform as a service (generic)

PEGASIS Power Efficient Gathering in Sensor Info Systems

PfR Performance Routing

PKI Public Key Infrastructure

PLC Power Line Communications (IoT multi-service edge transport)

POP Point of Presence

PSK Pre-shared Key

QEMU Quick Emulator

RCA Root Cause Analysis

REST Representation State Transfer

RIB Routing Information Base

RLOC Routing Locator (see LISP)

ROI Return on Investment

RPL IPv6 Routing Protocol for LLNs

S3 Simple Storage Service (AWS)

SaaS Software as a service (generic)

SAN Storage Area Network (see DC)

SCM Source Code Management (see CM)

SDN Software Defined Network

SLA Service Level Agreement

SNMP Simple Network Management Protocol

TCO Total Cost of Ownership

TE Traffic Engineering (see MPLS)

Copyright 2021 Nicholas Russo http://njrusmc.net 258

http://njrusmc.net


TEEN Threshold-sensitive Energy Efficient Network

TLS Transport Layer Security (TCP)

UCCX Unified Contact Center eXpress

UCM Unified Communications Manager

URI Universal Resource Identifier

VC Version Control (see CM)

VM Virtual Machine

VPC Virtual Private Cloud (AWS)

VPN Virtual Private Network

VRF VPN Routing and Forwarding (see MPLS)

VSN Virtual Service Node

VSS Virtual Switching System

VTF Virtual Topology Forwarder

VTS Virtual Topology System

VXLAN Virtual eXtensible Local Area Network

WAN Wide Area Network

WIP Work In Progress or Work In Process

WLAN Wireless Local Area Network

WLC Wireless LAN Controller

WPAN Wireless Personal Area Network

XaaS X as a service (generic)

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language (formerly Yet Another Markup Language)

ZTP Zero Touch Provisioning (Viptela)

Copyright 2021 Nicholas Russo http://njrusmc.net 259

http://njrusmc.net

	Cloud
	Introduction
	Infrastructure, platform, and software as a service (XaaS)
	Performance, scalability, and high availability
	Security implications, compliance, and policy
	Workload migration
	Compute virtualization
	Virtual Machines
	Containers with Docker Demonstration
	Python Virtual Environments (venv) for Refactoring

	Connectivity
	Virtual Switches
	Software-Defined Wide Area Network (SD-WAN Viptela Demonstration)
	Software-Defined Access (SDA)
	Software-Defined Data Center (SD-DC)

	Virtualization functions
	Network Functions Virtualization infrastructure (NFVi)
	Virtual Network Functions with NFVIS Demonstration

	Automation and orchestration tools
	Cloud Center
	Digital Network Architecture Center (DNA-C) Demonstration
	Kubernetes Orchestration with minikube Demonstration
	Amazon Web Services (AWS) CLI Demonstration
	Infrastructure as Code using Terraform
	Flask Application Monitoring with Prometheus

	References and Resources

	Network Programmability
	Data models and structures
	YANG
	YAML
	JSON
	XML

	Device programmability
	Google Remote Procedure Call (gRPC) on IOS-XR using iosxr_grpc
	gRPC on IOS-XR using grpcio and Manual Compilation
	gRPC Network Management Interface (gNMI) on IOS-XR using gNMIc
	Python paramiko Library on IOS-XE
	Python netmiko Library on IOS-XE
	NETCONF using netconf-console on IOS-XE
	NETCONF using Python and jinja2 on IOS-XE
	REST API on IOS-XE
	RESTCONF on IOS-XE

	Controller based network design
	SDN Models
	Centralized SDN using OpenFlow and Faucet

	Configuration management tools and version control systems
	Agent-based Summary
	Agent-less Summary
	Agent-less Demonstration with Ansible (SSH/CLI)
	NETCONF-based Infrastructure as Code with Ansible
	RESTCONF-based Infrastructure as Code with Ansible
	Agent-less Demonstration with Nornir
	Version Control Overview
	Git with Github
	Git with AWS CodeCommit and CodeBuild
	Subversion (SVN) and comparison to Git
	Network Validation with Batfish
	Data Validation with JSON Schema
	Pre/Post Checks with Cisco pyATS and Genie

	References and Resources

	Internet of Things
	IoT Technology Stack
	IoT Network Hierarchy
	Data Acquisition and Flow

	IoT standards and protocols
	IoT security
	IoT Edge and Fog Computing
	Data Aggregation
	Edge Intelligence

	References and Resources

	Blueprint v1.0 Legacy Topics
	Cloud
	Troubleshooting and Management
	OpenStack components with PackStack Demonstration
	Cloud Comparison Chart

	Network Programmability
	SDN Controllers
	DevOps methodologies, tools and workflows
	Basic Jenkins Setup Demonstration

	Internet of Things
	Performance, Reliability, and Scalability


	Glossary of Terms

